Western Alaska Salmon Stock Identification ProgramTechnical
Document:15Title: Status of the SNP baseline for sockeye salmonVersion: 1.0Authors: T. Dann, A. Barclay, C. Habicht

4 **Date:** September 14, 2009

Introduction

8 The single nucleotide polymorphism (SNP) baseline for sockeye salmon that will be used for 9 mixed stock analysis (MSA) to estimate stock contributions of catches sampled under the 10 Western Alaska Salmon Stock Identification Program (WASSIP) is in a state of perpetual 11 improvement. The collections that make up this baseline were collected over the past twenty 12 years and were funded by many sources including the State of Alaska through general funds and 13 disaster funds, the North Pacific Research Board, National Park Service, Federal Office of 14 Subsistence Management, Pacific Salmon Commission, and the Exxon Valdez Oil Spill Trustee 15 Council.

16

1 2

3

5 6

7

17 The suite of SNP markers screened for the baseline has also changed through time and will 18 continue to grow or change as more markers become available. We currently screen for 42 19 nuclear and three mitochondrial markers, but the WASSIP Advisory Panel has requested that 96 20 SNP markers be incorporated into the baseline to improve the precision and accuracy of stock 21 composition estimates. To meet this request, we are contracting the development of at least 50 22 SNP markers that are targeted to differentiate among sockeye salmon populations spawning 23 within western Alaska and the Alaska Peninsula drainages (Technical Document 6). These new 24 SNP markers will be assessed after screening a fraction of the baseline and the best-performing 25 SNP markers will be added to the baseline during the winter of 2009/2010.

¹ This document serves as a record of communication between the Alaska Department of Fish and Game Commercial Fisheries Division and the Western Alaska Salmon Stock Identification Program Technical Committee. As such, these documents serve diverse ad hoc information purposes and may contain basic, uninterpreted data. The contents of this document have not been subjected to review and should not be cited or distributed without the permission of the authors or the Commercial Fisheries Division.

Here we present the current state of the baseline based on samples collected through the 2008
collection season and genotyped for the currently available 42 nuclear and three mitochondrial
SNP markers.

- 30
- 31 32

Methods

- 33 Tissue Sampling
- 34

Baseline samples for SNP analyses were collected from spawning populations or obtained from existing agency archives from throughout the range of sockeye salmon in the Pacific Rim (Table 1). We used published genetic structure information (Beacham et al. 2006) to determine appropriate areas to sample outside the Bering Sea drainages. Target sample size for baseline collections was 95 individuals across all years for each population to achieve acceptable precision for the allele frequency estimates (Allendorf and Phelps 1981; Waples 1990a) and to accommodate our genotyping platform.

42

43 Laboratory Analysis

44

- 45 Assaying genotypes
- 46

47 Genomic DNA was extracted using a DNeasy® 96 Tissue Kit by QIAGEN® (Valencia, CA). 48 Forty-five sockeye SNP markers were assayed (Table 2), three mitochondrial DNA (mtDNA) 49 and 42 nuclear DNA (nDNA), using 5' nuclease methods described in Seeb et al. (2009). Thirty-50 six assays originated from Smith et al. (2005) and Elfstrom et al. (2006). Nine new markers 51 were developed using the methods of Smith et al. (2005) or Elfstrom et al. (2006) and 52 sequencing fifty individuals, ten individuals collected at each of five geographic locations 53 (Russia, Bristol Bay, Kodiak Island, Southcentral Alaska, and Southeast Alaska; Habicht et al. 54 submitted). Individuals were sequenced in both directions, and sequences were aligned and 55 screened for SNPs using Sequencher 4.5 software (Gene Codes Corporation).

57 Baseline population samples were genotyped using uniplex SNP genotyping performed in 384-58 well reaction plates and also by using the 48.48 array (Fluidigm Corporation) where 43 of the 45 59 markers were assayed in sets of 48 fish and One MHC2 190 and One STC-410 were assayed on 60 the 384-well platform. With either platform, genotypes from generally 384 fish were visualized 61 using the GeneMapper (uniplex platform; Applied Biosystems) and BioMark (array platform; Fluidigm Corporation) software programs and scored for each marker by two people 62 63 simultaneously. Scores were entered and archived in the Gene Conservation Laboratory Oracle 64 database, LOKI.

65

66 *Quality control*

67

68 Three measures were taken to ensure quality control of the baseline data:

- <u>Re-genotyping of samples</u> Eight percent of each collection was re-genotyped for all markers to ensure that genotypes were reproducible, to identify laboratory errors, and to measure rates of inconsistencies during repeated analyses on the uniplex and array platforms. We report here error rates for a representative baseline project which consisted of 87 baseline collections comprising 7,593 individuals (~ 15% of current baseline).
- 75

^{2.} Exclusion of individuals with an excessive rate of drop-outs - A threshold of 80% 76 77 scorable markers per individual was established and all individuals that did not meet this 78 threshold were excluded from statistical analysis and use in the baseline. This threshold 79 was set to exclude individuals with poor quality DNA. Poor quality DNA leads to lower 80 reproducibility and therefore adds error to the allele frequency estimates. The value of 81 80% was chosen based upon the observation that many individuals with high quality 82 DNA had some dropouts, but generally less than 20% of markers, while those with poorquality DNA had higher drop-out rates. As a result, there was little difference in which 83 84 individuals were excluded from analysis when picking the threshold as long as it was 85 within the 70% to 90% range.

This rule (referred to as the "80% rule") will also be used for samples from fishery 87 88 harvests to decrease errors and estimate variances caused by poor quality DNA and 89 missing data. This approach is an attempt to balance the benefits from better data with the 90 loss of power to accurately and precisely estimate stock proportions due to smaller 91 sample sizes. One other potential disadvantage of this approach is the potential to 92 introduce another form of bias if fish that are removed from analyses are not randomly 93 distributed in the mixture. Heterogeneity in sample removal may introduce bias in 94 subsequent estimates of stock proportions when samples with quality genotypic data are 95 not representative of the entire harvest being sampled. We anticipate that bias will only 96 be a concern if significant proportions of mixtures are excluded.

97

98 3. Exclusion of duplicate individuals – Finally, we searched for suspected duplicate fish
 99 within collections by identifying pairs of individuals that had identical multi-marker
 100 genotypes at 38 or more markers. If suspected duplicates were found, the second
 101 individual in each matching pair was removed from further analyses.

102

104 Statistical analysis

105

```
106 Heterozygosity and F_{ST}
```

107

108 Genotypic data were retrieved from LOKI and were used to calculate allele frequencies. 109 Observed heterozygosity, expected heterozygosity, and F_{ST} (Weir and Cockerham 1984) were 110 calculated for all markers using the program GDA (Lewis and Zaykin 2001).

111

112 Linkage disequilibrium

113

114 All pairs of nuclear markers were tested for gametic disequilibrium within each collection using 115 GENEPOP (version 4.0; updated version of Raymond and Rousset 1995; Rousset 2008). We 116 defined a pair of markers to be significantly out of gametic equilibrium if tests for gametic 117 disequilibrium were significant (P < 0.01) for greater than half of all collections.

¹⁰³

Pooling collections into populations

When gametic linkage was significant, we produced composite genotypes by ordering the alleles within each marker alphabetically and then stringing the alleles together by marker ordered alphanumerically. Markers that did not exhibit gametic disequilibrium with any other markers and markers that were combined were defined as loci for the remaining analyses. All mtDNA markers were combined into a single locus.

- 123
- 124
- 125

126 Collections taken at the same location at similar calendar days in different years were pooled as 127 suggested by Waples et al. (1990). Technical Document 2 has a more detailed investigation of 128 temporal variation among collections taken in different years at the same site and calendar time. 129 Samples taken at the same location, but at substantially different calendar days, and samples 130 taken from geographically proximate locations were tested for homogeneity using a chi-square 131 test of allele frequency distributions across all loci. Groups of collections that demonstrated 132 homogeneity (P > 0.01, not corrected for multiple tests) were pooled. The pooled and the 133 remaining unpooled collections were defined as populations in further analyses. Our protocol 134 was to drop populations from further analyses if they were represented by sample sizes of less 135 than 80 fish.

136

137 Hardy-Weinberg equilibrium

138

Genotype distributions within collections were tested for deviation from Hardy-Weinberg expectation (H-W) using GENEPOP (version 4.0). These tests were repeated once collections were pooled into populations. For H-W, critical values ($\alpha = 0.05$) were adjusted for multiple tests within markers among collections and multiple tests across markers within collections (Rice 1989). The corrections for multiple tests resulted in low power to detect significant departures from H-W, so we also examined the number of departures from H-W by marker and by population prior to correcting for multiple tests to assess any patterns in departures from H-W.

- 147

148 Identifying markers under selection

149

LOSITAN (Antao et al. 2008), an implementation of the FDIST2 package of Beaumont and Nichols (1996), was used to identify markers that produce F_{ST} outliers. Markers with high outlier F_{ST} values are thought to be under dispersive selection. Due to limitations on the size of dataset used in this program and the geography of the application, we restricted this analysis to populations from the northern Alaska Peninsula, Bristol Bay, and the Kuskokwim River for the 42 nuclear markers. We chose running parameters based upon the following:

- 156
- 157 1. We chose to not use the "neutral" mean F_{ST} setting. This setting estimates a neutral F_{ST} 158 from only markers that an initial run of LOSITAN reveals to not be under 159 selection. A second and final run is computed incorporating all markers (giving 160 each an estimated selection status) using the mean neutral F_{ST} obtained from the 161 first run described above (Antao et al. 2008 page 3 # 6). We chose not to use this 162 setting as this simulation analysis suggests that a majority of markers are 163 candidates for balancing selection, more than we believe, and removing this many 164 markers from the estimation of the mean F_{ST} results in a spuriously high mean F_{ST} 165 estimate. However, we ran the analysis both using and not using the 'neutral' 166 setting and found that results do not differ much (e.g., the same markers were 167 identified as candidates for positive selection);
- 168 2. We chose to use the force mean F_{ST} setting because it approximates the desired 169 average simulated F_{ST} to the average value observed in the dataset using a 170 bisection algorithm (Antao et al. 2008 page 3 # 7);
- 3. We changed the sample size to more accurately represent the number of individuals we
 observed in most of the "islands" in our baseline (n=95);
- 1734. We removed six populations from the Lake Clark and Upper Kuskokwim regions from174the analysis because simulations based upon the island model may not be175appropriate for a baseline with these populations included. There is evidence that176Lake Clark sockeye salmon populations were recently founded and show signs of177a bottleneck effect (Habicht et al. 2004), and there are probably high levels of178isolation-by-distance for both of these groups of populations. We chose to remove

179	these specific populations as they were the most divergent on a Neighbor-Joining
180	tree of pair-wise F _{ST} 's (data not shown);
181	5. We changed the expected number of populations to equal what we included in the
182	simulations (i.e. 90 instead of 96);
183	6. We removed five markers from the analysis as they exhibit very low levels of
184	heterozygosity. Beaumont and Nichols recommend discarding markers with
185	heterozygosities less than 2/ (sample size), so we used 0.02 as our cut off for
186	removal, which included: One_ctgf-301, One_MARCKS-241, One_p53-534,
187	One_RAG1-103, and One_RH2op-395.
188	

- 189 Population structure visualization
- 190

191 To visualize genetic population structure, Cavalli-Sforza and Edwards (1967) chord distances 192 (CSE) were calculated from allele frequencies at the 42 SNP loci and plotted using the UPGMA 193 method. We chose this measure of genetic distance because previous analyses have identified 194 loci under positive selection and utilizing distance measures that assume neutral loci and are 195 based upon genetic drift (i.e., pair-wise F_{ST} 's) may not be appropriate. While this measure is 196 biased by unequal sample sizes, a substantial portion of the populations included in this baseline 197 are of 95 individuals. CSE distances were used to produce two UPGMA trees: 1) all baseline 198 populations and 2) restricted to populations from Western Alaska and the Alaska Peninsula 199 (WAAP).

200

201 Hierarchical log-likelihood analysis

202

We examined the homogeneity of allele frequencies among populations within regions using a hierarchical log-likelihood ratio test (*G* test; Sokal and Rohlf, 1995). We included data from only nuclear loci and removed *One_MHC2_251* so as not to duplicate the divergence information provided by the two linked MHC loci. We examined *G*-statistics for each of 17 coastwide regions (Table 1), and summed *G*-statistics and degrees of freedom from 12 of these regions into three broad-scale regions (i.e., Western Bristol Bay YK, Eastern Bristol Bay, and Alaska Peninsula) for an examination of broad-scale population structure. These two levels of analysis

correspond to the regional groupings used in the two UPGMA trees described above. We further summed test statistics across regions into Western Alaska (Norton Sound to South Alaska Peninsula) and Coastwide totals. Finally, we summed test statistics across loci for an overall measure of allele frequency homogeneity at the same hierarchical levels described above. As the number of populations within regions differed greatly (i.e., 3 populations in the Norton Sound region, 116 populations in the Western Gulf of Alaska region), we divided *G*-statistics by degrees of freedom to examine a measure of regional diversity less biased by sampling effort.

217

218 Baseline evaluation for MSA

219

220 Reporting groups were delineated based on geographic regions that were thought to be 221 applicable for MSA analyses of mixtures captured under the WASSIP program. Within Norton 222 Sound, Yukon and Kuskokwim Rivers, Bristol Bay and Alaska Peninsula, the reporting groups 223 represent smaller geographic areas on the scale of commercial fishing districts. Outside of these 224 areas, the reporting groups represent much larger geographic areas on the order of management 225 regions or countries. During estimation of stock composition, populations were maintained 226 separately within these reporting groups as recommended by Wood et al. (1987). Reporting 227 group estimates were calculated by summing population estimates.

228

229 We then assessed the potential of the baseline to identify these reporting groups for MSA 230 applications with simulations and proof tests. For the simulations, we generated 400 fish based 231 on the population-specific allele frequencies from all the populations within each reporting group 232 (i.e., 100% simulations). This process was repeated 1,000 times, and the mean and central 90% 233 of the distribution of estimates were reported as the estimate and the 90% confidence interval. 234 Simulated mixtures were analyzed using SPAM version 3.7b (Debevec et al. 2000; ADF&G 235 2001). For the proof tests, we created a test mixture by sampling approximately 200 fish from 236 each reporting group; we rebuilt the baseline excluding the sampled fish. The test mixture was 237 analyzed using BAYES (Pella and Masuda 2001) with a flat prior (with a weight of one fish). 238 Estimates and 90% credibility intervals from three chains with different starting conditions were 239 tabulated. We repeated this procedure for each reporting group. For both the simulations and proof tests, a critical level of 90% correct allocation was used to determine if the reporting groupwas acceptably identifiable (e.g., Seeb et al. 2000).

242 243

Results

244 Tissue Sampling

245

246 A total of 49,809 individuals from 562 collections representing 375 populations (Table 1; Figure 247 1) have been genotyped at the 45 SNP markers (Table 2). This baseline represents an increase of 248 120 populations to the 255 population baseline presented by the ADF&G Gene Conservation 249 Laboratory (GCL) in its proposal to AYK SSI for WASSIP funding in 2007. Collection sites 250 ranged from the western Kamchatka Peninsula (Russia) to Puget Sound, Washington. The most 251 comprehensive collection was done in the densest portion of the species range, i.e., populations 252 from rivers draining into the Bering Sea and areas adjacent to the Bering Sea (Figure 1). For 253 some analyses we included a subset of collections from the Western Alaska/Alaska Peninsula 254 region (WAAP). This subset was comprised of 20,856 individuals from 221 collections 255 representing 137 populations ranging from the Norton Sound region in the north to the South 256 Peninsula region to the south (Table 1; Figure 2).

257

258 Laboratory Analysis

259

260 The overall failure rate for successfully assaying genotypes at the 45 SNP markers in a 261 representative project was 2.3%. The quality control process demonstrated a discrepancy rate of 262 0.58%. Assuming an equal error rate in the original and quality control genotyping process, our 263 baseline collections were genotyped with a process that produced genotypes with an error rate of 0.29%. An average of 1.4 fish per collection was removed based upon the 80% rule for the 264 265 collections that were included in this baseline (SD = 3.3). A majority of collections had no fish 266 removed based upon the 80% rule (i.e., 317), and 102 collections had one fish removed while 12 267 collections each had greater than 10 fish removed.

- 268
- 269

270	Statistical Analysis
271	
272	Heterozygosity and F_{ST}
273	
274	Observed heterozygosity, expected heterozygosity, and F_{ST} for each of the nuclear markers, and
275	only F_{ST} for each of the combined loci (see linkage disequilibrium results) are in shown in Table
276	3. Observed heterozygosity was lower than expected heterozygosity at every nuclear marker
277	with the averages of 0.243 and 0.288, respectively. Observed heterozygosities ranged widely
278	from 0.017 to 0.447.
279	
280	The F_{ST} estimate over all markers was 0.149, but a few nuclear markers had considerably higher
281	values. F_{ST} estimates for <i>One_MHC2_251</i> and <i>One_MHC2_190</i> were 0.303 and 0.356,
282	respectively. Other markers with F_{ST} estimates greater than 0.2 included: One_Tf_ex10-750,
283	One_HpaI-99, One_STC-410, One_zP3b-49, One_Tf_ex3-182, and One_GHII-2465. The
284	remaining markers had F_{ST} values below 0.170 and only three markers had values below 0.050.
285	
286	Linkage disequilibrium
287	
288	Significant gametic disequilibrium was found between one pair of nuclear SNP markers
289	(One_MHC2_190 and One_MHC2_251; Table 4). Other pairs of markers that exhibited linkage
290	disequilibrium within some collections, but below the threshold of 50% of the populations were:
291	One_GPDH and One_GPDH2 (34% of collections); One_Tf_ex10-750 and One_Tf_ex3-182
292	(19%); and One_RF-112 and One_RF-295 (7%). All of these pairs are known to be physically
293	linked.
294	
295	For the pair of linked nuclear SNP markers and the triplet of mitochondrial SNP markers
296	(One_CO1, One_Cytb_17, and One_Cytb_26), genotypes from each marker were pooled to form
297	one haplotype locus: One_MHC2_190_251 and One_CO1_Cytb17_26, respectively. After
298	combining the pair of linked nuclear markers and the three mtDNA markers, the final analyses
299	included 41 independent nuclear loci and 1 mitochondrial locus (described by three SNPs).

301 Pooling collections into populations

302

303 The 562 collections reduced to a total of 375 unique populations after pooling collections taken 304 from similar locations over multiple years and from nearby sites that exhibited genetic 305 homogeneity. Some tests for homogeneity between collections within the WAAP area were 306 significant based upon our criterion. Of these, we pooled the following populations with 307 temporal collections based upon the recommendations of Waples (1990): Goodnews River North 308 Fork, Goodnews River Middle Fork, Tommy Creek, Upper Talarik Creek, and Idavain Creek. 309 These represent 18% of the 28 pairs of collections taken from similar locations over multiple 310 years within the WAAP area. The test for homogeneity between the two collections from the 311 West Fork of the Black River (Chignik drainage) was also significant, but we have little metadata associated with the 1997 collection and so did not pool these collections for this 312 313 baseline analysis. Technical Document 2 provides a more detailed investigation of this temporal 314 diversity.

315

The average sample size per population was 133 fish, although a few populations outside the Western Alaska/Alaska Peninsula (WAAP) area were small with as few as 10 fish. Within the WAAP, the smallest population sample size was 47 fish. These populations with sample sizes below 80 fish were mistakenly included in subsequent analyses and are indicated by an asterisk in the population column of Table 1; they will be excluded in the final baseline. A substantial portion of the populations included in this baseline are of 95 individuals (i.e., 115), and 175 populations have a sample size greater than 95 individuals.

323 324

325 Hardy-Weinberg equilibrium

326

327 Significant departures from H-W were not found in any populations for the 42 nuclear SNP 328 markers after correcting for multiple tests. However, before correcting for multiple tests, we did 329 find some patterns in the distribution of departures from H-W. *One_MHC2_190* and 330 *One_MHC2_251* were out of H-W in 29 and 30 populations, respectively, while no other marker

331 was out of H-W equilibrium at more than 23 populations (Table 2; Figure 3). Nineteen 332 populations were expected to be out of H-W equilibrium for each marker by chance at $\alpha = 0.05$. 333

334 We also detected eight populations with greater than twice as many markers out of H-W 335 equilibrium than would be expected by chance (before correcting for multiple tests; Table 1; 336 Figure 4). Two markers were expected to be out of H-W equilibrium for each population by 337 chance at $\alpha = 0.05$. These included Avacha Bay, Dvu 'Yurta River, and Belaia River in Russia, 338 the middle fork of the Goodnews River in western Alaska, Fish Creek and English Bay in Cook 339 Inlet, Mill Creek in southeast Alaska, and Baker Lake in Washington. In all but one of the 61 340 cases, the significant departure from H-W at markers for these populations was due to an excess 341 of homozygotes (i.e., positive F_{IS} values).

342

343 Identifying markers under selection

344

345 The results of the LOSITAN analysis clearly suggest that the two major histocompatibility 346 complex markers (One_MHC2_190 and One_MHC2_251; MHC) are very different from other 347 markers and that statistically they are candidates for positive selection using these simulation 348 parameters (Figure 5). LOSITAN also suggests One_STC-410 and One_ZNF-61 as candidates 349 for positive selection, although the F_{ST} estimate for One_ZNF-61 is not much greater than the 350 upper bound of the mean F_{ST} estimate. We would expect 37 (total markers analyzed) minus 2 351 (MHC markers) = 35×0.05 (alpha) = 2 markers to be outside the bounds by chance, so 352 excluding candidates for balancing selection, having two markers above the upper bounds is not 353 unreasonable.

354

The LOSITAN output shows a lower bound that defines many markers as candidates for balancing selection. After removal of the two MHC markers, the F_{ST} mean and confidence interval bounds decreased and nine fewer markers are considered candidates for balancing selection. This also then includes two more markers (*One_STR07* and *One_Prl2*) as candidates for positive selection, but these were just above the upper bound (data not shown).

- 360
- 361

362 Population structure visualization

363

Genetic relationships among baseline populations are shown schematically in the UPGMA trees (Figures 6 and 7). On the tree with the whole Pacific Rim baseline, the deepest structure was found within the Eastern and Western Gulf of Alaska (Figure 6). A regional structuring of populations was the most common pattern with populations clustered by lakes and drainages. These patterns can most easily be visualized in the WAAP UPGMA (Figure 7), where most of the populations within some of the drainages or nursery lakes cluster together including the Naknek River, Alagnak River, and Chignik River.

371

372 Population relationships within some drainages are more complicated than others, which may be 373 the result of a more complicated geography and other factors. The populations within the Wood 374 River, which is made up of five large lakes, beach and tributary spawners, and early- and late-run 375 timing, divide into four clusters. The populations within the Nushagak River, which is a long 376 river with one branch that drains large lakes and other branches that are devoid of lakes, are 377 divided into two clusters and an outlying population. The populations within the Kvichak River, 378 which is made up of one large lake and one smaller lake, are in three clusters with one outlying 379 These clusters are made of populations from Lake Clark (highly divergent), population. 380 northeastern and southwestern Iliamna Lake, and a population spawning between the two lakes. 381 Many of the populations within the North and South Peninsula, which contain many short rivers 382 that drain directly into the ocean, are highly divergent from each other and may reflect the 383 stronger influence of genetic drift on these smaller populations. The populations within the 384 Egegik River cluster into one group representing tributary spawners from the eastern and north 385 side of the nursery lake and a divergent population representing the south side of the nursery 386 lake.

387

Finally, the Kuskokwim River and Norton Sound contained some of the most divergent collections. These included the Necons River and Telaquana Lake from the Kuskokwim River and Salmon and Glacial lakes that drain into Norton Sound. These Kuskokwim populations and the highly divergent Lake Clark populations were the populations removed from the LOSITAN analysis for markers under selection and are the most divergent in the WAAP area (top nodes;Figure 7).

394

395 *Hierarchical log-likelihood analysis*

396

397 Substantial heterogeneity in allele frequencies existed among populations within all fine- and 398 broad-scale regions (Table 5). Each test for homogeneity of allele frequencies among 399 populations within regions was highly significant (P < 0.01). The measure of regional diversity 400 corrected for number of populations (i.e., G / df) highlights substantial diversity within particular 401 regions, notably Norton Sound, Yukon Kuskokwim and Kvichak in the WAAP area (G / df =17.27, 18.74, and 21.74, respectively; Figure 8), and Western Gulf of Alaska and Eastern Gulf of 402 403 Alaska in the coastwide analysis (G / df = 37.74, and 26.16, respectively; Figure 9). Also 404 notable is the relatively low within-region diversity for the WAAP area, especially within the 405 Igushik, Wood, Naknek and Ugashik regions.

406

407 Different markers exhibit varying degrees of allele frequency divergence across regions. The 408 One MHC2 251 marker is the most powerful included in this analysis at describing differences 409 among populations for both the coastwide and WAAP regional scales, and exhibits similar 410 discriminatory power in both regional areas (i.e., G / df = 82.14 and 78.88, respectively). Other 411 markers are very useful at describing coastwide genetic diversity but not as useful within the 412 WAAP study area (e.g., $One_E2 G / df = 25.79$ and 9.79, respectively; Figure 10). Similarly, 413 some markers show no differences among populations within some regions (e.g., One p53-576 414 G / df = 0.00 for Western Kamchatka through Yukon Kuskokwim, data not shown), but very 415 high levels of diversity among populations for other regions ($One_p53-576 G / df = 26.36$ for 416 Western Gulf of Alaska).

417

418 Baseline evaluation for MSA

419

Three reporting groups failed to meet the critical level of 90% correct allocation in the 100% simulations (Igushik, Ugashik, and North Peninsula; 86%, 86% and 89%, respectively; Figure 11; Table 6). When fish were misallocated in the Igushik simulations, 10% were allocated to the

423 Wood River reporting group and 2% to the Nushagak reporting group. When fish were 424 misallocated in the Ugashik simulations, 4% were allocated to the Egegik reporting group, 3% to 425 the North Peninsula reporting group, and 2% to the Western Gulf of Alaska reporting group. 426 When fish were misallocated in the North Peninsula simulations, 4% were allocated to the 427 Western Gulf of Alaska reporting group and 2% to the South Peninsula reporting group. In 428 general, the simulations indicated that most reporting groups can be distinguished from one 429 another with a high degree of accuracy (mean = 93%).

430

Proof tests using the current baseline indicate that the 17 coastwide reporting groups can be
distinguished from each other with a high degree of accuracy (mean = 97%; Figure 12; Table 7).
Only one of the reporting groups (Western Gulf of Alaska; 89%) did not meet the critical level of
90% correct allocation. When fish were misallocated in the Western Gulf of Alaska proof test,
9% were allocated to the Eastern Gulf of Alaska reporting group.

Discussion

- 436
- 437 438

439 This sockeye salmon baseline is the most comprehensive SNP database available for any Pacific 440 salmonid. It is also the most comprehensive genetic baseline of any marker type that includes 441 high representation from all areas that are most likely to contribute to mixtures sampled under 442 the WASSIP, with 127 populations from the WAAP areas. The WAAP is also the area where 443 the majority of sockeye salmon are produced. Almost 50% of all of the sockeye salmon 444 production in the world originate from Bristol Bay drainages alone (Eggers and Irvine 2007; 445 Bugaev et al. 2008). The baseline is least complete for the US/Canada trans-boundary rivers that 446 drain into Southeast Alaska and spawning areas in British Columbia. Major ancestral lineages 447 from those regions that were identified in Beacham et al. (2006) are represented by one or more 448 collections. Thus, despite some gaps in the baseline in this area, adequate samples exist so that 449 fish originating from Eastern Gulf of Alaska populations not included in the baseline will most 450 likely allocate to the large-scale Eastern Gulf of Alaska reporting group.

451

452 Population structure for sockeye salmon spanning the Pacific Rim was first described by453 Beacham et al. (2006). The baseline data for these studies are least complete in the densest

454 portion of the species range. Such a baseline bias may impact MSA allocations. Their data, for 455 example, indicated that 7% of a test sample of 62 fish from the western Bering Sea originated 456 from the Alaska Peninsula and none originated from Bristol Bay. Data presented by Habicht et 457 al. (submitted) suggest that Bristol Bay is the dominant regional stock of North American 458 sockeye salmon migrating through the western Bering Sea, and Alaska Peninsula stocks are 459 rarely present. This observation is supported by that of Bugaev et al. (2008), who used scale 460 pattern analysis to report a dominant role for Bristol Bay stocks (55% of immature sockeye 461 salmon) in summer 2006 BASIS surveys in the REEZ. Nevertheless, Beacham et al. (2006) 462 provide a framework for future studies. The patterns of genetic relationships identified in this 463 study are similar to those reported in Beacham et al. (2006) and provide a template to insure that 464 samples used in this study adequately represent the major lineages of sockeye salmon at the 465 extremes of the species range.

- 466
- 467 468

Marker F_{ST} and resolving power

469 Beacham et al. (2001) point out that the MHC markers provide a significant portion of the 470 resolving power of the MHC/microsatellite data bases; merging of the MHC portions of the two 471 data sets needs further evaluation given the different analysis methods between the studies. The 472 two MHC markers in our study had the highest F_{ST} values among all the markers (Table 3) and 473 the one MHC included in the log-likelihood ratio test had the highest G statistics in both the 474 overall and the WAAP baseline (Figure 10), indicative of the resolving power of this locus for 475 GSI. Among the other markers with high F_{ST} values, six others were above 0.2 and included: 476 One Tf ex10-750 (0.206); One HpaI-99(0.218); One STC-410 (0.220); One zP3b-49 (0.266); 477 One_Tf_ex3-182 (0.268); and One_GHII-2465 (0.275). Not surprisingly, these six were also 478 identified in the log likelihood ratio test analysis as the only loci with degree-of-freedom-479 adjusted G statistics higher than 30 for the full baseline (Figure 10).

480

The log-likelihood ratio test analysis also showed that the loci with the highest G statistics for the full baseline were not identical to those for the WAAP area. For the WAAP area, the G statistics were generally lower with only five loci showing degree-of-freedom-adjusted G statistics above 20. Of these, four of the markers were identified as powerful for discriminating among 485 populations within regions for the full baseline (the MHC marker, *One_Tf_ex10-750; One_HpaI-*

486 99; and One_zP3b-49), while One_ALDOB-135 was relatively powerful within the WAAP area

but intermediate for the full baseline. One_STC_410, One_TFex3-182 and One_GHII-2465 had
G statistics below 20 in the WAAP baseline, but higher than 30 in the full baseline. The loglikelihood ratio test might be a good test to identify the most useful markers by region as
additional markers become available.

491

492 Markers under selection

493

494 Both MHC markers also appeared to be the markers under the strongest positive selection within 495 WAAP (Figure 5). MHC is known to be under selection in salmonids (e.g. Atlantic salmon, 496 Dionne et al. 2007). One_STC-410 was also identified as a candidate locus under selection 497 (Figure 5). One STC-410 is a SNP for the target locus stanniocalcin, which is a calcium- and 498 phosphate-regulating hormone (Wagner 1994). Some loci with high F_{ST} values across the species 499 range were not identified as candidates for positive selection within the WAAP area, but may be 500 under selection outside of this area. These differences in selection and resolving power are 501 indicated as large differences between the measure of within-area diversity (G / df) for the coastwide and WAAP areas in Figure 10 (e.g., One_GHII-2465). One_Zp3b-49 is associated 502 503 with the zona pellucida, an extracellular matrix that surrounds growing oocytes in mammals and 504 fish and plays a role in gamete recognition, and therefore may be under selection (Epifano et al. 505 1995). One_Tf_ex10-750 and One_Tf_ex3-182 code for transferrin, which is an iron-binding 506 protein that plays an important role in iron metabolism and resistance to bacterial infection in a 507 variety of organisms. Positive selection for transferrin was detected in an analysis across 508 salmonids (Ford et. al 1999).

509

The LOSITAN analysis also suggested a large number of markers as candidates for balancing selection. The expected relationships between H_e and F_{ST} were highly affected by the parameters used and the markers included the program. Given the large number of markers that were identified as candidates for balancing selection, more work needs to be done to determine if they are indeed under balancing selection or if some of the model assumptions have been violated. In that effort we are investigating an analysis of these markers in a Bayesian framework (i.e., 516 BayeScan; Foll and Gaggiotti 2008) that may help better identify candidate markers under 517 selection.

518

519 Deviations from H-W

520

521 We identified some factors that may explain why some populations were out of H-W equilibrium 522 at more than twice the expected number of markers (5 at P = 0.05, not adjusted for multiple 523 tests). Two of the populations that met this criterion were from places where samples taken early 524 and late within calendar years were pooled (English Bay and Mill Creek). When chi-square tests 525 were performed to test for homogeneity among these collections, English Bay had a P-value of 526 0.02 and Mill Creek had a value above 0.05. These P-values were above our critical value of 527 0.01 for pooling collections into populations. One possibility that either the early or late 528 collections were mixtures of two run timings which resulted in the large number of markers out 529 of H-W while producing relatively high *P*-values in the chi-square tests.

530

531 Three of the populations out of H-W equilibrium were taken in Russia and we have little 532 metadata to determine which factors may contribute to departures from H-W (Avacha Bay, Dvu 533 'Yurta River, and Belaia River). The large number of deviant markers for Avacha Bay (12) 534 indicates that this collection may be made up from a combination of populations, separated either 535 temporally or spatially, but we have little information for this collection. The Dvu 'Yurta and 536 Belaia river populations are each combinations of two collections taken in consecutive years. 537 Again we do not have calendar day for these collections or any other metadata, but the *P*-values 538 for the chi-square tests were below 0.01 for both of these tests, indicating that the collections 539 differed between the two years. In future baseline analyses we may want to exclude the 1995 540 collections because they contain only 11 fish each.

541

The Middle Fork Goodnews River population was made up of three collections (1991, 2001, and 2007) and the chi-square test was highly significant (P < 0.01). The 2007 collection was made throughout June and July, while the other collections were made in mid July and early August indicating that there may be multiple populations in these samples that are temporally segregated.

The two Fish Creek collections were taken at similar calendar dates 16 years apart and had a highly significant chi-square test result (P < 0.01). These collections are of fish captured at the Fish Creek weir and may be a mixture of populations that segregate spatially within the Fish Creek drainage. These collections could not be pooled with the Fish Creek samples taken at the Big Lake Hatchery, which is in the Fish Creek drainage. This year we collected fish in Meadow Creek, another tributary to Fish Creek, with the hope that this collection can substitute for the weir collection in future baselines.

555

556 Finally, the collection from Baker Lake had more than five markers out of H-W equilibrium. We 557 have no metadata from this location, but spatially segregated natural and artificial spawning 558 areas that are used Lake for in Baker to mitigate dams 559 (http://wdfw.wa.gov/fish/sockeye/bakerriver.htm) might be becoming reproductively isolated 560 (i.e. Hendry et al. 2000). All but one of these departures from H-W expectations are the result of 561 an excess of homozygotes, indicative of a Wahlund effect and consistent with observing an 562 admixture of populations.

563

564 *Population structure*

565

566 The hierarchical analysis of allele frequency homogeneity highlighted high levels of diversity 567 observed for some regions (e.g., Kvichak, Western Gulf of Alaska and Eastern Gulf of Alaska; 568 Figures 8 and 9), although the range of many of the defined regions was large. These 569 observations are often driven by large differences in allele frequencies observed between large 570 groups of populations or for few outlier populations. Within the Kvichak region, this is the result 571 of a strong divergence between populations within the Lake Clark and Iliamna nursery lakes that 572 has been previously described (Habicht et al. 2004). The Western Gulf of Alaska region 573 encompasses a geographically broad region with high levels of divergence among populations 574 within the region. This divergence is largely driven by the clustering of populations within the 575 Kodiak Archipelago, Kenai, Susitna and Copper rivers (Figure 6). In contrast, the large diversity 576 observed within the Eastern Gulf of Alaska region results from a few highly deviant outlier 577 populations (i.e., Kanalku Lake, Mahoney Creek, Tahltan Lake, Little Tahltan Lake, and Kah

578 Sheets Lake) with allele frequencies very discordant from two large, loosely clustered groups of 579 the remaining populations. There is relatively little genetic diversity observed within the WAAP 580 study area compared to the Gulf of Alaska regions, which may be the result of a more recent 581 common ancestral population in the Beringia Refugium and many populations with large 582 population sizes that likely retards the influence of genetic drift on genetic divergence.

583

Aside from some notable exceptions such as Norton Sound, Upper Kuskokwim and Lake Clark,
the WAAP study area shows lower levels of genetic differentiation than areas in the Eastern and
Western Gulf of Alaska (Figure 9, Table 5).

587

588 Baseline evaluation

589

590 Simulation and proof test results indicate that the 17 coastwide reporting groups can be 591 distinguished from each other with a reasonable degree of accuracy. The two methods differ in 592 that simulations generate hypothetical individuals from baseline allele frequencies, whereas 593 proof tests remove known individuals from the baseline to be treated as mixture individuals. As 594 such the proof tests provide a more realistic and robust methodology for testing the utility of the 595 baseline at discriminating among reporting groups for GSI purposes. When fish were 596 misallocated they were most often allocated to neighboring reporting groups and/or reporting 597 groups with populations with very similar allele frequencies. For example, Pick Creek in the 598 Wood River reporting group has allele frequencies similar to all of the Igushik populations, 599 groups together with Igushik populations on trees, and can cause misallocation between these 600 two adjacent reporting groups.

601

There are a number of potential sources of improvement in our baseline evaluation tests. The proof tests, for example, included only 200 individuals yet the WASSIP mixtures will generally be made up of 400 fish. The small sample sizes in the proof tests were necessitated by the small sample size of one reporting group (Norton Sound; 335 fish). The inclusion of additional SNPs will also likely increase resolving power due to an increase in the number of independent markers as well as the potential that some of the new SNPs are under selection and may represent adaptive differences among populations in the WASSIP area. Baseline evaluations that

are co	mprised of more heterogeneous mixture compositions (i.e., not 100%) will provide a
measu	re of baseline utility at discriminating among reporting groups in a more realistic fashion.
There	are statistical improvements that may improve our GSI resolving power and the results of
baselir	he evaluation tests. Two such examples are the use of informative priors when using
Bayesi	an methods for GSI and the use of a stratified estimate protocol (Technical Document 3).
	Future analyses
1.	Increase sample sizes for collections for which we have existing tissues to be genotyped.
2.	Incorporate collections gathered in the 2009 field collection season into baseline
	analyses.
3.	Remove populations with samples sizes of less than 80 fish (denoted with an asterisk in
	Table 1) for which we do not have existing tissues to be genotyped from the baseline.
4.	Investigate temporal variation in allele frequencies for collections from similar locations
	in multiple years. Is this variation driven by loci under selection? Does this variation
	represent problems with our genotyping process? We foresee resampling populations to
	ensure that the baseline data are still valid and to help address these concerns.
5.	Assess the suite of developing SNPs (see Technical Document 6) for utility in describing
	genetic variation within the WASSIP study area and for accurately and precisely
	estimating stock proportions in mixture samples from area fisheries.
6.	Perform proof tests with 400 fish in reporting groups where adequate numbers of fish
	exist.
7.	Perform simulations and proof tests using more heterogeneous mixture compositions
	(i.e., not 100%) to assess baseline utility at discriminating among reporting groups in a
	more realistic fashion.
8.	Investigate why we saw a consistent pattern of lower observed heterozygosities than
	expected (Table 3).
9.	Further investigate the utility of the loci identified in LOSITAN as loci under balancing
	selection. Loci under balancing selection may be good candidates to be replaced with
	loci under positive selection for MSA as new markers become available.
	measu There baselin Bayesi 1. 2. 3. 4. 5. 6. 7. 8.

- 639 10. Conduct further analyses of genetic diversity, including AMOVA and Nei's gene
 640 diversity analysis, and examine *G* statistics for hierarchical levels within the WAAP area
 641 that may have more biologic meaning (e.g., populations within nursery lakes).
- 642 **11.** For these other levels of hierarchy, compare levels of heterogeneity using Fisher's *F*-test
 643 to better understand how diversity is distributed in the baseline.
- 644 12. Examine the distribution of allelic richness by region and ascertainment region to assess645 ascertainment bias.
- Utilize statistical methods developed for estimating small proportions to increase the
 performance of MSA through decreased bias and increased precision. These methods
 might include the use of informative priors when using Bayesian methods for GSI and the
 use of a stratified estimate protocol (Technical Document 3)
- 650 14. Investigate the utility of reducing the range of the baseline to include only those651 populations that are likely to be present in WASSIP mixtures.

653	Literature Cited
654	
655	ADF&G (Alaska Department of Fish and Game). 2001. SPAM Version 3.5: Statistics Program
656	for Analyzing Mixtures. Alaska Department of Fish and Game, Commercial Fisheries
657	Division, Gene Conservation Lab. Available for download from
658	http://www.cf.adfg.state.ak.us/geninfo/research/genetics/software/spampage.php.
659	
660	Allendorf, F. W., and S. R. Phelps. 1981. Use of allelic frequencies to describe population
661	structure. Canadian Journal of Fisheries and Aquatic Sciences. 38:1507-1514.Anderson,
662	T. J. C., S. Nair, D. Sudimack, J. T. Williams, M. Mayxay, P. N. Newton, JP.
663	Guthmann, F. M. Smithuis, T. T. Hien, I. V. F. van den Broek, N. J. White, and F.
664	Nosten. 2005. Geographical distribution of selected and putatively neutral SNPs in
665	Southeast Asian malaria parasites. Molecular Biology and Evolution 22(12):2362-2374.
666	
667	Antao, T.,A. Lopes, R. Lopes, BP. Albano, and G. Luikart. 2008. LOSITAN: A workbench to
668	detect molecular adaptation based on a Fst-outlier method. BMC Bioinformatics 9:323
669 (70	1471-2105. Available at: <u>http://www.biomedcentral.com/1471-2105/9/323</u>
670	Descham T. D. I. D. Candy, K. I. Symamoult, T. Ming, D. Desch, A. Sahulta, D. Tusk, K. I.
671 672	Beacham, T. D., J. R. Candy, K. J. Supernault, T. Ming, B. Deagle, A. Schulze, D. Tuck, K. H. Kaukinen, J. R. Irvine, K. M. Miller, and R. E. Withler. 2001. Evaluation and application
673	of microsatellite and major histocompatibility complex variation for stock identification
674	of coho salmon in British Columbia. Transactions of the American Fisheries Society
675	130(6):1116-1149.
676	150(0).1110-114).
677	Beacham, T. D., B. McIntosh, C. MacConnachie, K. M. Miller, and R. E. Withler. 2006. Pacific
678	rim population structure of sockeye salmon as determined from microsatellite analysis.
679	Transactions of the American Fisheries Society 135(1):174-187.
680	
681	Beaumont, M.A. and R.A. Nichols. 1996. Evaluating loci for use in the genetic analysis of
682	population structure. Proceedings of the Royal Society of London B 263: 1619-1626.
683	
684	Bugaev, A. V., I. I. Glevov, E. V. Golub, K. W. Myers, J. E. Seeb, and M. Foster 2008. Origin
685	and distribution of sockeye salmon Oncorhynchus nerka local stocks in the western
686	Bering Sea in August-October 2006. Izv. TINRO 153:88-108.
687	
688	Cavalli-Sforza, L. L., and A. W. F. Edwards. 1967. Phylogenetic analysis: models and estimation
689	procedures. Evolution 21:550-570.
690	
691	Debevec, E. M., R. B. Gates, M. Masuda, J. Pella, J. Reynolds, and L. W. Seeb. 2000. SPAM
692	(version 3.2): Statistics Program for Analyzing Mixtures. Journal of Heredity 91: 509-
693	510.
694	
695	Dionne, M., K. M. Miller, J. J. Dodson, F. Caron, and L. Bernatchez. 2007. Clinal variation in
696	MHC diversity with temperature: Evidence for the role of host-pathogen interaction on
697	local adaptation in Atlantic salmon. Evolution 61(9):2154-2164.
698	

- Eggers, D. M., and J. R. Irvine. 2007. Trends in abundance and biological characteristics for
 North Pacific sockeye salmon. North Pacific Anadromous Fish Commission Bulletin
 4:53-75.
- Ford, M. J., P. J. Thornton and L. K. Park. 1999. Natural selection promotes divergence of transferrin among salmonid species. Molecular Ecology 8: 1055–1061.
- Elfstrom, C. M., C. T. Smith, and J. E. Seeb. 2006. Thirty-two single nucleotide polymorphism
 markers for high-throughput genotyping of sockeye salmon. Molecular Ecology Notes
 6(4):1255-1259.
- 709

702

- Fifano, O., L. Liang, and J. Dean. 1995. Mouse Zp1 encodes a zona pellucida protein
 homologous to egg envelope proteins in mammals and fish. Journal of Biological
 Chemistry 270(45):27254-27258.
- Foll, M., and O. Gaggiotti. 2008. A genome-scan method to identify selected loci appropriate for
 both dominant and codominant markers: a Bayesian perspective. Genetics 180: 977–993.
- Habicht, C., L. W. Seeb, K. W. Myers, E. Farley, J. E. Seeb. Submitted. Summer-fall
 distribution of stocks of immature sockeye salmon in the Bering Sea as revealed by single
 nucleotide polymorphisms (SNPs). Transactions of the American Fisheries Society.
 XX:XXX-XXX.
- Habicht, C., J. B. Olsen, L. Fair, and J. E. Seeb. 2004. Smaller effective population sizes
 evidenced by loss of microsatellite alleles in tributary-spawning populations of sockeye
 salmon from the Kvichak River, Alaska drainage. Environmental Biology of Fishes 69(14):51-62.
- Hendry, A. P., J. K. Wenburg, P. Bentzen, E. C. Volk, T P. Quinn. 2000. Rapid evolution of
 reproductive isolation in the wild: evidence from introduced salmon. Science 290:5491
 516 518.
- Lewis, P.O. and D. Zaykin. 2001. Genetic data analysis: computer program for the analysis of
 allelic data. Version 1.0. URL <u>http://lewis.eeb.uconn.edu/lewishome/software.html</u>.
- Pella, J., and M. Masuda. 2001. Bayesian methods for analysis of stock mixtures from genetic
 characters. Fishery Bulletin 99(1):151-167.
- Raymond, M., and F. Rousset. 1995. An exact test for population differentiation. Evolution 49:
 1280-1283.
- 740 Rice, W. R. 1989. Analyzing tables of statistical tests. Evolution 43:223-225.
- Rousset, F. 2008. GENEPOP '007: a complete re-implementation of the GENEPOP software for
 Windows and Linux. Molecular Ecology Resources 8(1):103-106.
- 744

741

733

- Seeb, J. E., C. E. Pascal, R. Ramakrishnan, and L. W. Seeb. 2009. SNP genotyping by the 5'nuclease reaction: advances in high throughput genotyping with non-model organisms. .
 A. Komar, editor Methods in Molecular Biology, Single Nucleotide Polymorphisms, 2d
 Edition. Humana Press.
- Seeb, L. W., M. A. Banks, T. D. Beacham, M. R. Bellinger, S. M. Blankenship, M. R. Campbell,
 N. A. Decovich, J. C. Garza, C.M. Guthrie III, T. A. Lundrigan, P. Moran, S. R. Narum,
 J. J. Stephenson, K. J. Supernault, D. J. Teel, W. D. Templin, J. K.Wenburg, S. F. Young,
 and C. T. Smith. 2007. Development of a standardized DNA database for Chinook
 salmon. Fisheries 32(11):540-552.
- 755

- Seeb, L. W., C. Habicht, W. D. Templin, K. E. Tarbox, R. Z. Davis, L. K. Brannian, and J. E.
 Seeb. 2000. Genetic diversity of sockeye salmon of Cook Inlet, Alaska, and its application to management of populations affected by the *Exxon Valdez* oil spill.
 Transactions of the American Fisheries Society 129(6):1223-1249.
- Smith, C. T., C. M. Elfstrom, L. W. Seeb, and J. E. Seeb. 2005. Use of sequence data from rainbow trout and Atlantic salmon for SNP detection in Pacific salmon. Molecular Ecology 14(13):4193-4203.
- 765 Sokal, R.R. and F.J. Rohlf. 1995. Biometry. 3rd Edition. Freeman, San Francisco, CA.
- 766

764

- Wagner, G. F. 1994. The molecular biology of the corpuscles of Stannius and regulation of
 stanniocalcin gene expression. In: Fish Physiology, edited by N. Sherwood, and C. Hew.
 New York: Academic, vol. XIII, chapt. 9, p. 273-306.Waples, R. S. 1990a. Conservation
 genetics of Pacific salmon III. Estimating effective population size. Journal of Heredity
 81(4):277-289.
- Waples, R. S. 1990b. Temporal changes of allele frequency in Pacific salmon implications for
 mixed-stock fishery analysis. Canadian Journal of Fisheries and Aquatic Sciences
 47(5):968-976.
- Weir, B.S. and C.C. Cockerham. 1984. Estimating F-statistics for the analysis of population
 structure. Evolution 38. 1358-1370.
- Wood, C. C., S. McKinnell, T. J. Mulligan, and D. A. Fournier. 1987. Stock identification with
 the maximum-likelihood mixture model: sensitivity analysis and application to complex
 problems. Canadian Journal of Fisheries and Aquatic Sciences. 44(4):866-881.
- 783

784	Technical Committee review and comments
785	
786	Document 5: Status of the SNP baseline for sockeye salmon
787	Figure 3. It is worth noting that the null expectation for no linkage disequilibrium
788	implicitly assumes an infinite parental population. One actually expects more than the nominal
789	alpha fraction of significant tests simply due to drift. The fact that no general elevation of
790	significant LD was found, despite rather large samples, suggests that most populations do not
791	have small Ne.
792	Tests for selection. We also are suspicious of results of programs that suggest large
793	numbers of loci apparently under selection. Evidence is accumulating that methods currently in
794	use to identify 'outlier' loci do not fully account for variance in Fst due to historical population
795	demography and population structure. See in particular the two references below:
796	
797	Excoffier L, Hofer T, Foll M (2009). Detecting loci under selection in a hierarchically structured
798	population. Heredity 103: 285–298.
799	Hermisson J (2009) Who believes in whole-genome scans for selection? Heredity 103, 283–284;
800	doi:10.1038/hdy.2009.101; published online 5 August 2009
801	
802	[Unedited comments from "Panel comments October 2009.doc" related to Technical Document 5.

Tables

805 Table 1. Baseline collection information organized geographically by reporting group and subdivided by population. Each line 806 contains an individual collection with associated collection name, collection date (only year is provided for collections where calendar day was not known), and sample size. Some collections were pooled based on geographic proximity and tests of homogeneity (see 807 808 text for methods). Collections that were pooled fall under the same number under the "Pop #" column. Populations that were out of 809 H-W at more than twice the number of loci than expected by chance (5 loci @ P = 0.05) are noted with the number of loci out of H-W equilibrium under the H-W column. Populations with an asterisk (*) were represented by collections with total sample sizes of less 810 811 than 80 fish. These populations will either have sample sizes increased in subsequent genotyping efforts or be dropped from future 812 analyses.

Reporting group	Pop # Population		H-W Collection	Date	Ν
Western Kamchatka	a 1	Palana River	Palana River	6/27/2002	48
			Palana River	2002	50
	2	Tigil River	Tigil River	6/18/2002	100
	3	Bistraya River*	Bistraya River	8/16/1998	56
	4	Bolshaya River*	Bolshaya River	8/16/1999	29
			Bolshaya River	2003	40
	5	Kuril Lake	Etamink River Early	8/21/1990	29
			Etamink River Late	9/28/1990	48
			Kirushutk River	2000	49
			Etamink River	8/12/2002	46
			Khakizun Bay	8/25/2002	49
			North Far Bay	8/26/2002	50
	6	Gabruschka Bay*	Gabruschka Bay	8/25/2002	49
	7	Vichenkiya River	Vichenkiya River	2000	96
	8	Olada Bay*	Olada Bay	2000	50
	9	Ozernaya Bay	Ozernaya Bay	2000	50
			Ozernaya River	2000	49
			Ozernaya River	8/5/2003	50

Reporting group	Pop # Population		H-\	W Collection	Date	N 50
				Ozernaya River	8/14/2002	
						988
Eastern Kamchatka	10	Avacha Bay*	12	Avacha Bay	2002	60
	11	Kitilgina River*		Kitilgina River	6/29/1998	28
	12	Kozireuka River*		Kozireuka River	1994	40
	13	Dvu 'Yurta River	9	Dvu 'Yurta River	1994	77
				Dvu 'Yurta River	1995	11
	14	Belaia River	7	Belaia River	1994	69
				Belaia River	1995	11
	15	Hapiza River		Hapiza River Early	7/17/1998	96
				Hapiza River Late	9/2/1998	79
	16	Elovka River		Elovka River	1994	69
				Elovka River	1995	40
	17	Azabachje Lake*		Azabachje Lake	2004	30
	18	Kamchatka River Early*		Kamchatka River Early	6/1/1998	79
	19	Kamchatka River Late		Kamchatka River Late	7/21/1998	97
	20	Lake Potat*		Lake Potat	7/29/2001	49
	21	Lake Vati*		Lake Vati	8/7/2002	48
	22	Anana Lagoon*		Anana Lagoon Early	6/24/2002	30
		-		Anana Lagoon Late	7/4/2002	48
	23	Severnaya Lagoon		Severnaya Lagoon	6/26/2002	97
						1,058
Norton Sound	24	Salmon Lake		Salmon Lake	8/3/2001	96
	25	Glacial Lake		Glacial Lake	8/15/2004	144
	26	Unalakleet River		Unalakleet River	8/22/2007	95
						335

Reporting group	Pop	# Population	Н-	WCollection	Date	Ν
					- // - /	
Yukon Kuskokwim	27	Gisasa River*		Gisasa River	7/16/2005	47
				Gisasa River	6/28/2006	18
	28	Andreafsky River		Andreafsky River	6/28/2006	48
				Andreafsky River	7/19/2008	46
	29	Necons River		Necons River	8/1/2006	55
				Necons River	7/28/2007	95
	30	Telaquana Lake Outlet		Telaquana Lake Outlet	8/14/2003	96
	31	Telaquana Lake Beach*		Telaquana Lake Beach	10/4/2005	47
	32	Kogrukluk River		Kogrukluk River	7/6/2001	96
				Kogrukluk River	7/24/2007	48
	33	Salmon River		Salmon River	8/2/2006	142
	34	Kwethluk River		Kwethluk River	2007	141
	35	Kanektok River		Kanektok River	7/16/2002	95
				Kanektok River	7/10/2007	48
	36	Goodnews River North Fork		Goodnews River North Fork	7/23/2002	95
				Goodnews River North Fork	7/20/2006	47
	37	Goodnews River Middle Fork	6	Goodnews River Middle Fork	8/1/1991	48
				Goodnews River Middle Fork	7/15/2001	96
				Goodnews River Middle Fork	6&7/2007	47
						1,355
Togiak	38	Togiak River		Togiak Lake, Sunday Creek	8/21/2000	94
				Togiak Lake, Outlet	7/27/2006	95
	39	Ongivinuk Lake		Ongivinuk Lake	8/24/2006	142
	40	Nenevok Lake		Nenevok Lake	8/24/2006	142
	41	Gechiak Lake		Gechiak Lake	8/21/2000	96
	42	Kulukak Lake		Kulukak Lake	8/24/2006	142

Reporting group	Pop # Population		H-W Collection	Date	Ν
					711
Igushik	43	Ualik Lake	Ualik Lake	8/14/2003	95
	44	Ongoke Lake Lower	Ongoke Lake Lower	8/28/2007	143
	45	Ongoke Lake Upper	Ongoke Lake Upper	8/27/2007	94
	46	Amanka Lake	Amanka Lake	8/14/2003	94
					426
Wood	47	Lake Kulik beaches	Lake Kulik beaches	9/10/2007	95
			Lake Kulik beaches	9/10/2007	78
			Lake Kulik beaches	7/27/2008	8
	48	Grant River	Grant River	8/22/2007	92
	49	Lake Kulik	Lake Kulik	8/1/2001	96
	50	Silver Horn Beaches	Silver Horn Beaches	9/10/2007	95
			Silver Horn Beaches	9/10/2007	94
			Silver Horn Beaches	7/27/2008	124
	51	Hardluck Bay	Hardluck Bay Beaches	9/10/2007	95
			Hardluck Bay	9/1/2008	156
	52	Agulukpak River	Agulukpak River	8/21/2001	96
	53	Anvil Bay Beach	Anvil Bay Beach	8/20/2006	94
			N4 Beach	8/11/2006	94
	54	Little Togiak Lake	A Beach	8/8/2004	65
			A Beach	8/10/2005	30
	55	Pick Creek	Pick Creek	8/3/2001	93
			Pick Creek	7/22/2008	90
	56	Sixth Creek	Sixth Creek	8/1/2008	94
	57	Agulowok River	Agulowok River	8/22/2001	95
	58	Lynx Beach	Lynx Beach	8/11/2006	95

Reporting group	Pop # Population		H-W Collection	Date	Ν
	59	Lynx Creek	Lynx Creek	8/22/2001	96
	60	Ice Creek Upper*	Ice Creek Upper	8/10/2007	67
	61	Aleknagik Lake Creeks	Happy Creek	7/30/2001	95
			Bear Creek	8/2/2001	96
			Hansen Creek	8/4/2004	95
			Ice Creek Lower	8/9/2007	95
	62	Yako Creek*	Yako Creek	8/1/2008	68
	63	Yako Beach	Yako Beach	8/19/2006	95
	64	Eagle Creek	Eagle Creek	8/12/2007	93
	65	Mission Creek	Mission Creek	1998	93
					2,672
Nushagak	66	Mulchatna River Upper	Mulchatna River	8/27/2001	96
			Mulchatna River	8/27/2001	65
	67	Mulchatna River Lower	Koktuli River	8/13/2000	96
			Stuyahok River	8/14/2000	96
	68	Nushagak River Upper	Klutapuk Creek	8/18/2001	95
			King Salmon River	8/18/2001	96
			Upper Nushagak Sloughs	8/19/2001	96
	69	Chauekuktuli Lake beach	Chauekuktuli Lake Beach	8/22/2001	96
	70	Allen River	Allen River	8/22/2001	95
	71	Allen River Beach	Allen River Beach	8/17/2000	95
	72	Nuyakuk Lake	Nuyakuk Lake	8/16/2000	99
			Nuyakuk Lake South Beach	8/23/2001	94
	73	Tikchik Lake Creek	Tikchik Lake Creek	8/18/2000	95
	74	Tikchik River	Tikchik River	8/18/2001	96
					1,310

Reporting group	Pop	# Population	H-W Collection	Date	Ν
Kvichak	75	Tlikakila River	Tlikakila River Glacier Fork	10/6/1999	47
			Tlikakila River Upper	9/24/2001	96
	76	Little Lake Clark	Little Lake Clark	10/9/1999	95
	77	Kijik River Lower	Kijik River Lower	9/18/2001	96
	78	Kijik River	Kijik River	9/19/2001	96
	79	Chulitna Lodge Beach	Chulitna Lodge Beach	10/5/1999	100
			Chulitna Lodge Ponds	10/1/1999	47
	80	Sucker Bay Lake	Sucker Bay Lake	9/14/2007	95
	81	Newhalen River	Tazimina River	8/29/2001	96
			Newhalen River	9/3/2002	96
	82	Tomkok Creek	Tomkok Creek	8/24/2000	95
			Tomkok Creek	8/28/2002	48
	83	Northeast Iliamna Lake	Knutson Bay Late	10/16/1999	95
			Bear Pond Late	10/17/1999	47
			Grass Pond Late	10/15/1999	44
			Pedro Ponds	1999	47
			Knutson Bay	8/27/2000	96
	84	East Iliamna Lake	Chinkelyes Creek	8/28/2000	97
			Finger Beach 1	8/24/2000	84
			Iliamna River	8/21/2004	46
	85	Iliamna River Late	Iliamna River Late	10/17/1999	96
	86	Iliamna Lake Islands	Fuel Dump Island	8/28/2000	99
			Triangle Island	8/16/2000	96
			Woody Island West Beach	8/19/2001	100
	87	Tommy Creek	Tommy Creek	8/24/2000	96
			Tommy Creek	8/19/2002	48
	88	Copper River	Copper River	8/23/1999	47
			Copper River	8/28/2000	96

Reporting group	Pop # Population		H-W Collection	Date	Ν
	89	South Iliamna Lake	Gibralter River	8/23/1999	47
			Belinda Creek	8/25/2000	95
			Dennis Creek	8/23/2000	96
			Gibralter River	8/25/2000	100
			Nick N Creek	8/25/2000	96
	90	Gibraltar Lake	Southeast Creek	8/26/2000	96
			Dream Creek	8/22/2001	96
	91	Upper Talarik Creek	Upper Talarik Creek	8/15/2004	94
			Upper Talarik Creek	8/10/2006	94
	92	Lower Talarik Creek	Lower Talarik Creek	8/26/2000	96
			Lower Talarik Creek	8/23/2001	70
					3,221
Alagnak	93	Moraine Creek	Moraine Creek	9/4/2001	96
C			Funnel Creek Early	8/8/2004	171
			Moraine Creek	9/9/2004	96
			Moraine Creek Early	8/8/2004	190
	94	Battle Lake	Battle Creek	9/4/2001	96
			Battle Creek	9/8/2004	96
			Battle Lake Beach	9/11/2004	190
			Battle Lake Tributary	9/11/2004	192
	95	Nanuktuk Creek	Nanuktuk Creek	9/9/2004	191
			Nanuktuk Creek Early	8/9/2004	190
	96	Kulik River	Kulik River	9/5/2001	96
			Kulik River	9/8/2004	96
					1,700
Naknek	97	American River	American River	8/22/2000	95

Reporting group	Pop # Population		H-W Collection	Date	Ν
			American River	8/17/2001	95
	98	Grosvenor Lake	Grosvenor Lake	8/12/2003	96
	99	Hardscrabble Creek	Hardscrabble Creek	8/12/2003	95
	100	Iliuk Arm	Katolinat Creek #1	9/17/2006	48
			Margot Creek	8/15/2001	95
	101	East La Gorce Creek*	East La Gorce Creek	8/27/2006	47
	102	Headwater Creek	Headwater Creek	7/22/2001	132
	103	Brooks Lake	Brooks Lake	8/22/2000	100
	104	Dumpling Creek #1*	Dumpling Creek #1	8/26/2006	48
	105	Dumpling Creek #3	Dumpling Creek #3	9/17/2006	83
	106	Charlene Creek*	Charlene Creek	9/11/2006	47
	107	Lower Q-Tip Lake	Lower Q-Tip Lake	9/12/2006	86
	108	North La Gorce Creek*	North La Gorce Creek	9/10/2006	47
	109	Idavain Creek	Idavain Creek	8/23/2000	96
			Idavain Creek	8/29/2006	48
					1,258
Egegik	110	East Becharof Lake	Becharof Creek	8/11/2000	96
			Cabin Creek	8/15/2000	96
			Ruth Lake Outlet	8/12/2000	95
			Cleo Creek	8/16/2001	95
			Featherly Creek	8/16/2001	95
			Burls Creek	8/16/2006	93
			Salmon Creek	8/16/2006	190
	111	Kejulik River	Kejulik River Upper	8/8/2000	47
			Kejulik River	8/17/2001	96
	112	Becharof Lake North	Becharof Lake North Tributary	8/11/2008	189
	113	Becharof Lake South	Becharof Lake South Beach	8/11/2008	189

Reporting group	Pop # Population H-V		H-W Collection	Date	N
					1,281
Ugashik	114	Ugashik Creek	Ugashik Creek	7/21/2001	96
	115	Ugashik Lake	Ugashik Narrows	8/24/2000	97
			Deer Creek	7/20/2001	96
			East Creek Mouth	8/8/2005	95
			Black Creek	8/24/2005	95
	116	Outlet Stream	Outlet Stream	8/26/2000	96
	117	Figure 8 Creek	Figure 8 Creek	8/22/2005	94
	118	Old Ham Creek	Old Ham Creek	8/22/2005	95
					764
North Peninsula	119	Cinder River	Mainstem Cinder River	7/29/2005	95
			Wiggly Creek	7/29/2005	80
	120	Lava Creek	Lava Creek	7/23/2004	92
			Mud Creek A	7/30/2005	95
	121	Meshik Lake	Meshik Lake Shoals	7/30/2005	95
			Meshik Lake Outlet	7/30/2005	95
	122	Meshik River	Blue Violet Creek	7/29/2002	92
			Landlock Creek	7/29/2002	96
			L Creek	7/30/2005	95
	123	Red Bluff Creek	Red Bluff Creek	7/30/2005	95
	124	Willie Creek	Willie Creek	8/27/2001	81
	125	Wildman Lake	Wildman Lake	7/30/2005	94
	126	Ocean River	Ocean River	2001	96
	127	Sandy Lake	Sandy Lake	6/30/2000	96
			Sandy Lake	7/8/2007	95
	128	Bear River Early	Bear River Early	6/30/2000	96

Reporting group	Pop # Population		H-W Collection	Date	Ν
	129	Bear River Late	Bear River Late	8/18/2000	96
	130	Hoodoo Lake	Hoodoo Lake	7/31/2001	95
			Hoodoo Lake Shoals	7/31/2005	95
			Nelson River	2007	47
	131	Nelson River	Nelson River	7/5/2000	96
	132	Davids River	Davids River	7/31/2005	95
	133	North Creek	North Creek	7/25/2007	91
	134	Paul Hansen Tributary	Paul Hansen Tributary	7/30/2002	95
	135	Outer Marker Lake	Outer Marker Lake	9/9/2004	95
	136	Swanson's Lagoon	Swanson's Lagoon	8/25/2008	95
	137	Peterson Lagoon	Peterson Lagoon	8/2/2005	95
	138	Whaleback Mountain Creek	Whaleback Mountain Creek	7/30/2002	96
	139	Summer Bay Lake	Summer Bay Lake	8/25/1999	96
	140	McLees Lake	McLees Lake	6/4/2004	142
					2,817
South Peninsula	141	Hansen Lake	Hansen Lake	8/2/2005	95
	142	Middle Lagoon	Middle Lagoon	7/28/2004	142
	143	Thin Point Lagoon	Thin Point Lagoon	8/1/2005	95
	144	Mortensen's Lagoon	Mortensen's Lagoon	8/2/2004	142
	145	Long John Lagoon	Long John Lagoon	8/1/2005	95
	146	Archeredin Lake	Archeredin Lake	8/3/2005	95
	147	Sanak Island	Sanak Island	8/24/2008	86
	148	Canoe Bay River	Canoe Bay River	8/26/2008	95
	149	Orzinski	Orzinski	7/1/2000	95
	150	Black Lake	Big Spring	1997	95
			Broad Creek	9/1/1997	94
			Boulevard Creek	9/1/1997	95

Reporting group	Pop	# Population	H-W Collection	Date	Ν
			Alec River	9/1/1997	96
			Fan Creek	1997	95
	151	Chiaktuak Creek Early	Chiaktuak Creek Middle	9/18/1997	94
			Chiaktuak Creek Early	1997	94
			Chiaktuak Creek Early	8/29/2008	174
	152	Chiaktuak Creek Late*	Chiaktuak Creek Late	10/23/1996	50
	153	West Fork Black River Upper	West Fork Black River Upper	8/28/2008	179
	154	West Fork Black River	West Fork Black River	1997	95
	155	Hatchery Beach Early	Hatchery Beach	9/15/1997	95
			Hatchery Creek Early	8/29/2008	94
			Cucumber Creek	8/29/2008	119
	156	Hatchery Beach Late	Hatchery Beach Late	10/18/1996	95
	157	Clark River Early	Clark River Early	8/28/2008	121
			Clark River Early	9/16/1997	96
	158	Clark River Late	Clark River Late	10/19/1996	95
	159	Chignik River	Chignik River	8/22/1998	95
	160	Surprise Lake	Surprise Lake	8/22/2008	95
					3,006
Western GOA	161	Upper Station Lower	Upper Station Lower	1993	95
	162	Upper Station Upper	Upper Station Upper	9/1/1993	95
	163	Upper Station Early	Upper Station Early	6/15/2000	95
	164	Akalura Lagoon Late	Akalura Lagoon Late	9/2/2005	95
	165	Frazer Lake Upper	Pinnell Creek Mouth	8/21/2008	78
			Stumble Creek Mouth	8/21/2008	95
			Courts Beach	8/21/2008	95
			Midway Creek Mouth	8/21/2008	93
			Midway Beach	8/21/2008	95

Reporting group	Pop # Population		H-W Collection	Date	Ν
			Linda Creek Mouth	8/22/2008	95
	166	Hollow Fox Beach	Hollow Fox Beach	8/22/2008	95
	167	Frazer Lake Lower	Outlet Beach	8/20/2008	95
			Valarian Creek	8/21/2008	95
	168	Dog Salmon Creek	Dog Salmon Creek	8/22/2008	95
	169	Horse Marine Lake	Horse Marine Lake	9/2/2005	95
	170	Ayakulik River	Ayakulik River	7/26/2000	94
			Ayakulik River Late	8/14/2008	9 4
	171	Karluk Lake	O'Malley River	9/30/1999	95
			Lower Thumb River	9/30/1999	95
	172	Upper Thumb Lake	Upper Thumb Lake	7/24/2000	95
	173	Little River Lake	Little River Lake	7/15/1997	96
	174	Uganik Lake	Uganik Lake	7/15/1997	95
	175	Buskin Lake	Buskin Lake	6/26/2005	95
	176	Lake Louise	Lake Louise	8/3/2005	95
	177	Pasagshak Lake	Pasagshak Lake	7/15/2005	95
	178	Lake Miam	Lake Miam	9/2/2005	94
	179	Saltery Lake	Saltery Lake	1994	95
			Saltery Lake	8/26/1999	93
	180	Ocean Beach	Ocean Beach	8/29/2006	95
	181	Afognak Lake*	Afognak Lake	8/15/1993	79
	182	Malina Creek	Malina Creek	8/15/1993	80
	183	Thorsheim Lake	Thorsheim Lake	8/23/2006	83
	184	Portage Lake	Portage Lake	1998	96
	185	Paul's Lake*	Paul's Lake	1994	70
	186	Little Kitoi	Little Kitoi	9/10/1993	95
	187	Kaflia Lake	Kaflia Lake	8/27/2008	95
	188	Crescent Lake Upper	Crescent Lake Site 1	1994	48

Reporting group	Pop	# Population	H-W Collection	Date	Ν
			Crescent River	1995	95
	189	Crescent Lake Lower	Crescent River	7/1/1992	95
			Cresent Lake Site 2	1994	47
			Crescent River	7/7/2005	95
	190	Little Jack Creek	Little Jack Creek	9/6/2006	142
	191	South Fork Big River	South Fork Big River	8/14/2007	218
	192	Wolverine Creek	Wolverine Creek	7/5/1993	95
	193	Black Sand Creek	Black Sand Creek	8/13/2007	124
	194	Farro Lake Creek	Farro Lake Creek	8/13/2007	155
	195	McArthur River	McArthur River	1993	95
	196	Chilligan River	Chilligan River	1992	95
			Chilligan River	1994	48
	197	Chakachatna Slough	Chakachatna Slough	8/27/2008	95
	198	Beluga River	West Fork Coal Creek	1993	95
		-	Lone King Creek	9/4/2006	30
			Lone King Creek	8/27/2008	30
	199	Packers Lake	Packers Lake	7/1/1992	95
			Packers Lake	1993	48
	200	Moose Creek Yentna	Moose Creek Yentna	8/27/2007	106
	201	Puntilla Lake	Puntilla Lake	9/6/2006	143
	202	Red Salmon Lake	Red Salmon Lake	9/7/2006	131
	203	Trimble River	Trimble River Site 1	9/17/2007	61
			Trimble River Site 2	9/17/2007	47
	204	Canyon Creek	Skwentna River	9/20/2007	108
		-	Canyon Creek	9/20/2007	65
	205	Judd Lake	Judd Lake	8/23/1993	95
			Judd Lake	7/26/2006	94
	206	Trinity Lake	Trinity Lake	8/1/1992	94

Reporting group	Pop	# Population	H-W Collection	Date	Ν
			Trinity/Movie Lakes	9/2/1993	95
	207	Shell Lake	Shell Lake	9/3/1993	95
			Shell Lake	7/24/2006	95
	208	Hewitt Lake	Hewitt Lake	8/1/1992	49
			Hewitt Lake	8/2/2006	65
	209	Kichatna River	Kichatna River Site 1	8/27/2007	103
			Kichatna River Site 2	8/27/2007	19
	210	Yentna River West Fork	West Fork Unnamed Slough	9/1/1992	96
			West Fork Yentna River	9/10/1993	99
	211	Chelatna Lake	Chelatna Lake	8/28/1993	95
			Chelatna Lake	7/27/2006	95
	212	Swan Lake	Swan Lake	9/2/2006	95
			Swan Lake	8/15/2007	47
	213	Byers Lake	Byers Lake	1993	95
			Byers Lake	8/13/2007	95
	214	Spink Creek	Spink Creek	8/27/2007	30
			Spink Creek	8/30/2008	95
	215	Susitna River Sloughs	Susitna River Slough # 11	1995	50
		-	Susitna River Slough # 11	9/5/1996	6
			Susitna River Sloughs 8, 11, 21	9/5/1997	95
	216	Stephan Lake	Stephan Lake	9/2/1993	95
			Stephan Lake	7/28/2007	95
	217	Sheep River	Sheep River	8/30/2008	189
	218	Larson Lake	Larson Lake	9/1/1993	95
			Larson Lake	7/23/2006	95
	219	Mama and Papa Bear Lakes	Mama and Papa Bear Lakes	9/3/1997	50
			Talkeetna River Sloughs	9/4/1997	79

Reporting group	Pop	# Population	H-'	WCollection	Date	Ν
				Papa Bear Lake	8/28/2007	53
	220	Birch Creek		Birch Creek	1993	67
				Birch Creek	8/28/2007	133
	221	Nancy Lake		Nancy Lake	8/27/1993	95
	222	Big Lake		Big Lake	8/1/1992	95
				Fish Creek	1993	95
				Fish Creek	8/15/1994	94
	223	Fish Creek	6	Fish Creek	8/1/1992	95
				Fish Creek	8/5/2008	190
	224	Cottonwood Wasilla Creeks		Cottonwood Creek	1993	95
				Wasilla Creek	1998	71
	225	Eska Creek		Eska Creek	9/5/2006	95
	226	Jim Creek		Jim Creek	9/2/1997	95
	227	Bodenburg Creek		Bodenburg Creek	8/30/2006	143
	228	Sixmile Creek		Sixmile Creek	7/30/2008	94
	229	Williwaw Creek		Williwaw Creek	9/7/2006	39
				Williwaw Creek	8/23/2007	69
	230	Swanson River		Swanson River	8/21/1997	95
	231	Bishop Creek		Bishop Creek	1993	95
	232	Daniels Lake		Daniels Lake	1993	95
	233	Trail Lake Creeks		Railroad Creek	8/13/1997	95
				Johnson Creek	8/12/1997	88
	234	Moose Creek		Moose Creek	7/27/1993	47
				Moose Creek	1994	95
	235	Ptarmigan Creek		Ptarmigan Creek	8/1/1992	47
				Ptarmigan Creek	1993	95
	236	Tern Lake		Tern Lake	9/1/1992	47

Reporting group	Pop	# Population	H-W Collection	Date	Ν
			Tern Lake	1993	95
	237	Quartz Creek	Quartz Creek	8/6/1993	95
	238	Between Skilak and Kenai Lakes	Russian River below falls	8/2/1993	93
			Kenai River Late	9/11/1993	47
			Kenai River Early	8/18/1993	48
			Kenai River Site 1	8/22/1994	47
			Kenai River Site 2	8/22/1994	48
			Kenai River Site 4	8/22/1994	48
			Kenai River Early	1994	96
			Kenai River Site 3	8/22/1994	47
			Kenai River Site 5	9/9/1994	95
	239	Upper Russian Lake Late Bear Creek	Upper Russian Lake Late Bear Creek	8/29/1997	94
	240	Upper Russian Lake Early	Upper Russian River Early, Weir	7/1/1992	96
			Goat Creek	8/19/1997	95
	241	Upper Russian Lake Late South	Upper Russian Lake Late South	9/16/1999	95
	242	Upper Russian Lake Late North	Upper Russian Lake Late North	9/17/1999	95
	243	Lower Russian Lake Late Outlet	Lower Russian Lake Late Outlet	8/2/1993	95
	244	Hidden Lake	Hidden Creek	7/29/1993	95
			Hidden Lake North Shore	9/23/2008	95
	245	Skilak Lake Outlet	Skilak Lake	8/1/1992	96
			Skilak Lake Outlet Early	1994	140
			Skilak Lake Outlet Late	1994	140
			Skilak Lake	1995	48
	246	Tustumena Lake	Moose Creek	8/1/1992	96
			Nikolai Creek	7/1/1992	95
			Bear Creek	8/10/1993	95
			Glacier Flats Creek	8/4/1994	95
			Seepage Creek	1994	95

Reporting group	Pop	# Population	H-V	W Collection	Date	Ν
				Tustumena Lake Site A	1994	48
				Tustumena Lake Site B	1994	48
	247	English Bay	8	English Bay Early	6/1/1992	95
				English Bay Late	10/1/1992	95
	248	Delight River*		Delight River	1993	71
	249	Erb Creek		Erb Creek	8/1/1991	94
	250	Eshamy Creek		Eshamy Lake	10/1/1991	95
		-		Eshamy Creek	8/3/2008	95
	251	Main Bay		Main Bay	7/13/1991	94
	252	Coghill Lake		Coghill Lake	9/1/1991	96
				Coghill Lake North	8/27/1992	91
				Coghill Lake East	8/27/1992	94
	253	Miners Lake		Miners Lake	8/20/1991	93
	254	Eyak Lake Middle Arm		Eyak Lake Middle Arm	8/2/2007	95
	255	Eyak Lake South Beaches		Eyak Lake South Beaches	8/22/2007	94
	256	McKinley Lake		McKinley Lake	8/20/2007	95
	257	McKinley Lake Salmon Creek		McKinley Lake Salmon Creek	7/25/2007	95
	258	Mentasta Lake		Mentasta Lake	7/15/2008	197
	259	Tanada Creek		Tanada Creek	8/21/2005	94
	260	East Fork Gulkana River Fish Creek	-	East Fork Gulkana River Fish Creek	8/1/2008	211
	261	East Fork Gulkana River*		East Fork Gulkana River	8/1/2008	75
	262	Swede Lake		Swede Lake	8/13/2008	201
	263	Mendeltna Creek		Mendeltna Creek	8/22/2008	108
	264	Banana Lake		Banana Lake	8/18/2008	81
	265	Bear Hole		Bear Hole	8/14/2008	144
	266	St. Anne Creek		St. Anne Creek	7/15/2005	94
				St. Anne Creek	7/22/2008	205
	267	Mahlo River		Mahlo River	7/22/2008	191

Reporting group	Pop	# Population	H-W Collection	Date	Ν
	268	Klutina River	Klutina River	8/21/2008	156
	269	Long Lake	Long Lake	9/7/2005	95
	270	Tebay River	Tebay River	8/18/2008	197
	271	Bremner River Salmon Creek	Bremner River Salmon Creek	8/17/2008	99
	272	Bremner River Steamboat Lake	Bremner River Steamboat Lake	8/17/2008	177
	273	Clear Creek	Clear Creek	8/24/2007	94
	274	Martin Lake	Martin Lake	7/26/2007	95
	275	Kushtaka Lake	Kushtaka Lake	8/9/2007	95
	276	Bering Lake	Bering Lake	7/12/1991	95
					17,259
Eastern GOA	277	East Alsek River	East Alsek River	10/15/2000	96
	278	Klukshu River	Klukshu River	8/23/2006	95
	279	Upper Tatshenshini	Upper Tatshenshini	2003	95
	280	Neva Lake	Neva Lake	7/11/2008	94
	281	Chilkat River Bear Flats	Chilkat River Bear Flats	8/9/2007	95
	282	Chilkat River Mule Meadows	Chilkat River Mule Meadows	8/1/2003	95
	283	Chilkat River Mosquito Lake	Chilkat River Mosquito Lake	8/4/2007	95
	284	Chilkat Lake Early	Chilkat Lake Early	7/29/2007	95
	285	Chilkat Lake Late	Chilkat Lake Late	8/12/2007	95
	286	Chilkoot River	Chilkoot River	10/3/2003	95
	287	Chilkoot Lake Beaches	Chilkoot Lake Beaches	7/21/2007	95
	288	Berners Bay	Berners Bay	8/18/2003	95
	289	Windfall Lake	Windfall Lake	7/31/2003	48
			Windfall Lake	8/2/2007	48
	290	Steep Creek	Steep Creek	8/20/2003	95
	291	Nahlin River	Nahlin River	7/31/2003	50
			Nahlin River	7/31/2007	34

Reporting group	Pop	# Population	H-W Collection	Date	Ν
	292	Tatsamenie Lake	Tatsamenie Lake	1992	95
	293	Tatsamenie Lake	Tatsamenie Lake	2005	95
	294	Little Tatsamenie Lake	Little Tatsamenie Lake	9/21/1990	64
			Little Tatsamenie Lake	9/11/1991	25
	295	Little Trapper Lake	Little Trapper Lake	9/21/1990	95
	296	Kuthai Lake	Kuthai Lake	2006	95
	297	Taku River Mainstem	Taku River Mainstem	9/24/2007	95
	298	Snettisham Hatchery	Speel Lake	9/17/2003	95
			Snettisham Hatchery	11/27/2006	95
	299	Crescent Lake	Crescent Lake	9/10/2003	94
	300	Kook Lake	Kook Lake	7/30/2007	95
	301	Sitkoh Lake	Sitkoh Lake	9/26/2003	95
	302	Kanalku Lake	Kanalku Lake	7/7/2007	95
	303	Falls Lake	Falls Lake	9/2/2003	95
	304	Salmon Lake	Salmon Lake	7/21/2007	91
	305	Redfish Lake Beaches	Redfish Lake Beaches	8/10/1993	95
	306	Kutlaku Lake	Kutlaku Lake	9/17/2003	95
	307	Petersburg Lake	Petersburg Lake	8/23/2004	95
	308	Kah Sheets Lake	Kah Sheets Lake	8/25/2003	96
	309	Tahltan Lake	Tahltan Lake	2006	95
	310	Little Tahltan Lake	Little Tahltan Lake	9/24/1990	95
	311	Stikine Devil's Elbow*	Stikine Devil's Elbow	9/7/2007	55
	312	Scud River	Scud River	9/13/2007	88
	313	Porcupine River*	Porcupine River	9/13/2007	36
	314	Stikine Andy Smith Slough*	Stikine Andy Smith Slough	9/15/2007	10
	315	Stikine Fowler Slough*	Stikine Fowler Slough	9/15/2007	11
	316	Craig River*	Craig River	2006	12
			Craigson Slough	9/14/2007	43

317318319320	Iskut River Shakes Slough Creek* Mill Creek	7	Craig River Iskut River Iskut River Iskut River Shakes Slough Creek Shakes Slough Creek Mill Creek Early	2007 1985 1986 2002 8/22/2006 8/16/2007	5 30 24 29 41 13
318 319	Shakes Slough Creek*	7	Iskut River Iskut River Shakes Slough Creek Shakes Slough Creek	1986 2002 8/22/2006 8/16/2007	24 29 41
319	-	7	Iskut River Shakes Slough Creek Shakes Slough Creek	2002 8/22/2006 8/16/2007	29 41
319	-	7	Shakes Slough Creek Shakes Slough Creek	8/22/2006 8/16/2007	41
319	-	7	Shakes Slough Creek	8/16/2007	
	Mill Creek	7	-		13
	Mill Creek	7	Mill Creek Farly		
320			with Creek Larry	7/24/2007	95
320			Mill Creek Late	8/12/2007	95
	Kunk Lake		Kunk Lake	9/14/2003	96
321	Thoms Lake		Thoms Lake	9/2/2004	94
322	Neck Lake		Neck Lake	4/23/2007	95
323	McDonald Lake Hatchery Creek		McDonald Lake	9/15/1992	96
			McDonald Lake	9/5/2003	93
			Hatchery Creek	9/1/2007	95
324	McDonald Lake Outlet		McDonald Lake Outlet	2007	95
325	Gene's Lake		Gene's Lake	8/17/2007	95
326	Helm Lake		Helm Lake	9/21/2005	95
327	Heckman Lake		Heckman Lake	9/25/2004	95
			Heckman Lake	9/21/2007	95
328	Mahoney Creek*		Mahoney Creek	8/15/2003	58
329	Hugh Smith Lake Cobb Creek*		Hugh Smith Lake Cobb Creek	9/6/2007	62
330	Hugh Smith Lake Bushmann Creek		Hugh Smith Lake Bushmann Creek	9/8/2004	95
331	Salmon Bay Lake		Salmon Bay Lake	9/10/2004	95
332	Red Bay Lake		Red Bay Lake	1992	50
			Red Bay Lake	9/13/2004	95
333	Shipley Lake		Shipley Lake	9/8/2003	94
334	Sarkar Lakes		Sarkar Lakes	2000	45
			Five Finger Creek	9/8/2005	50

Reporting group	Pop # Population		H-W Collection	Date	N
	335	Three Mile Creek	Three Mile Creek	9/30/2004	95
	336	Hetta Lake	Hetta Lake	10/1/2003	94
	337	Klakas Lake	Klakas Lake	9/12/2004	95
	338	Kegan Lake	Kegan Lake	9/10/2004	95
	339	Karta River	Karta River	8/25/1992	93
			McGilvery Creek	9/4/2003	96
	340	Luck Lake	Luck Lake	9/10/2004	94
	341	Sweetwater Lake	Sweetwater Lake	6/7/2003	47
			Sweetwater Lake	6/23/2007	95
	342	Essowah Lake	Essowah Lake	9/5/2004	96
	343	Bowser Lake	Bowser Lake	9/13/2001	95
	344	Damdochax Creek	Damdochax Creek	9/18/2001	94
	345	Tintina Creek	Tintina Creek	9/12/2006	94
	346	Meziadin Lake	Meziadin Lake	9/19/2001	91
			Meziadin Beach	9/26/2006	95
	347	Hanna Creek	Hanna Creek	9/3/2006	93
	348	Kitlope Lake	Kitlope Lake	8/3/2006	95
	349	Four Mile Creek	Four Mile Creek	8/29/2006	85
	350	Pinkut Creek	Pinkut Creek	8/25/2006	95
	351	Pierre Creek	Pierre Creek	8/30/2006	95
	352	Fulton River	Fulton River	2006	95
	353	Morrison Arm	Morrison Arm	9/7/2007	92
	354	Lower Tahlo River	Lower Tahlo River	1988	10
			Lower Tahlo River	1994	85
	355	Upper Babine River	Upper Babine River	2006	95
	356	Sustut River	Sustut River	2006	95
	357	Slamgeesh River	Slamgeesh River	8/7/2006	95
	358	Swan Lake	Swan Lake	10/15/2006	94

Reporting group	Pop	# Population	H-	W Collection	Date	Ν
	359	Nangeese River*		Nangeese River	9/19/2006	42
	360	Zymoetz River*		Zymoetz River	9/3/2006	64
	361	Nanika River		Nanika River	9/21/2007	94
	362	Kitsumkalum Lake*		Kitsumkalum Lake	11/6/2006	56
	363	Lakelse Lake		Lakelse Lake	8/22/2006	93
	364	Alastair Lake		Alastair Lake	9/14/2006	85
	365	Naden River		Naden River	1995	95
	366	Stellako River		Stellako River	9/28/2007	94
	367	Horsefly River		Upper Horsefly River	9/2/2001	95
				Lower Horsefly River	9/12/2001	95
	368	Chilko Lake		Chilko Lake	1/1/2001	95
	369	Raft River		Raft River	9/4/2001	95
	370	Adams River		Adams River	10/3/2007	95
	371	Birkenhead River		Birkenhead River	10/18/2007	95
	372	Weaver Creek		Weaver Creek	1/1/2001	94
	373	Harrison River		Harrison River	10/17/2007	95
	374	Baker Lake	6	Baker Lake	5/16/1996	97
	375	Cedar River		Cedar River	10/26/1994	96
						9,648

814	Table 2.	Forty-five	sockeye SNP	markers	assayed for	this project	; three	mitochondrial DNA	A and
-----	----------	------------	-------------	---------	-------------	--------------	---------	-------------------	-------

42 nuclear DNA. Forward and reverse primers and probes are given for each new Taqman
 assay. Loci that were out of H-W equilibrium at more than the number of populations expected

by chance (19 populations @ P = 0.05) are noted with the number of populations out of H-W

⁸¹⁸ equilibrium (P = 0.05) under the H-W column.

Marker	Reference ¹	H-W
One_ACBP-79	А	
One_ALDOB-135	А	
One_ctgf-301	А	
One_CO1 ²	А	
One_Cytb_17 ²	А	
One_Cytb_26 ²	А	
One_E2-65	В	
One_GHII-2165	А	21
One_GPDH-201	В	20
One_GPDH2-187	В	
One_GPH-414	А	
One_hsc71-220	А	
One_HGFA-49	В	21
One_HpaI-71	А	
One_HpaI-99	А	
One_IL8r-362		
F: TTGCTAGAAGCGTTGGTTATGATGA		
R: CAGCAAAATTGAGAAGTCACTAGGAAAA		
VIC- CAGCCAAAGAAGAGTC		
FAM- AGCCAAAAAAGAGTC		
One_KPNA-422	А	
One_LEI-87	А	
One_MARCKS-241		
F: CCTATCACAGCTTGGTTGAGTTCAA		
R: TCCACCCGCTCATTTTTGTAAGAT		
VIC-TTGCTTAAAAGGTCTTCC		
FAM-TTGCTTAAAAGGTCATCC		
$One_MHC2_{190}^{3}$	А	29
One_MHC2_251 ³	А	30
One_Ots213-181	А	
One_p53-534	А	
One_ins-107	В	23
One_Prl2	А	

Marker	Reference ¹	H-W
One_RAG1-103	А	
One_RAG3-93	А	
One_RFC2-102	В	
One_RFC2-285	В	
One_RH2op-395	А	
One_serpin-75	В	
One_STC-410	А	22
One_STR07	А	
One_Tf_ex11-750	А	
One_Tf_in3-182	А	
One_U301_92	А	
One_U401-224		20
F: GGGTGGAGACGAACGGATTC		
R: GTACGATTTTTTTGTAGCCCCAAGT		
VIC-CACCTGGAAAGGACTGA		
FAM-ACACCTGGAAATGACTGA		
One_U404-229		
F: GTTTGTGTGTTGGTGTTTGTCCTT		
R: CATTTATCTTGGTGGACGTGTGAGT		
VIC-CATGTTCTTCAGTGAACC		
FAM-ATGTTCTTCAATGAACC		
One_U502-167		
F: GCTTTTGTGCAATAGCTATGTTGCT		
R: GCAAAGGTAGGCAGCAGATTG		
VIC-CTTCTTGATCAATAACG		
FAM-CTTCTTGATCGATAACG		
One_U503-170		20
F: GATTCAGAATTGCCACGACAAAGAA		
R: GTGATTGGTACATGTCTGTCGAGTT		
VIC-AAGTACTAAAATCAGTTTTACATTG		
FAM-TACTAAAATCAGTTGTACATTG		
One_U504-141		
- F: GCTATAGCTCACAGAGGATCCCA		
R: TATTGGCGGGTGAGGGATG		
VIC-TCAAGGACACAAACAA		
FAM-TCAAGGACAAAAACAA		
One_U508-533		
F: AGGCACAACCTCACATTTGGAA		

Marker	Reference ¹	H-W
R: CTCAAAGGGTCTGAATACTTATGTAAATAAGGT		
VIC-ACACTACAGCCTTATTC		
FAM-ACACTACAGCTTTATTC		
One_VIM-569	А	
One_ZNF-61		
F: CCATTCATGTTCTATTCAGATATATTTTGTGCA		
R: CCTAGCTAGAGCTCAACAATATGCA		
VIC-CTATGGACATGATCTTT		
FAM-TTCTATGGACATTATCTTT		
One_Zp3b-49	В	

¹ A) Elfstrom et al. (2006); B) Smith et al. (2005).
² mtDNA markers; composite haplotype loci were assembled for MSA analyses.
³ MHC markers were significantly linked in more than 50% of collections. Composite

phenotypes were assembled for MSA analyses.

|--|

826 including expected (H_e) and observed heterozygosity (H_o) for nuclear loci, and F_{ST} for all nuclear

827 and mitochondrial markers and for the combined nuclear marker. Minimum and maximum

828 values and overall F_{ST} are shown, while average heterozygosities include only nuclear markers. 829 Superscripts indicate sets of markers which were pooled into a single locus.

SNP	H _e	H _o	F _{ST}
One_ACBP-79	0.472	0.406	0.121
One_ALDOB-135	0.286	0.252	0.116
One_ctgf-301	0.045	0.042	0.048
One_E2-65	0.338	0.302	0.110
One_GHII-2165	0.307	0.220	0.275
One_GPDH-201	0.492	0.447	0.083
One_GPDH2-187	0.210	0.172	0.168
One_GPH-414	0.447	0.383	0.138
One_hcs71-220	0.333	0.298	0.108
One_HGFA-49	0.307	0.277	0.088
One_HpaI-71	0.465	0.400	0.133
One_HpaI-99	0.204	0.157	0.218
One_IL8r-362	0.123	0.114	0.092
One_KPNA-422	0.378	0.339	0.098
One_LEI-87	0.478	0.420	0.114
One_MARCKS-241	0.032	0.029	0.073
One_MHC2_190 ^a	0.491	0.305	0.356
One_MHC2_251 ^a	0.491	0.334	0.303
One_Ots213-181	0.277	0.241	0.125
One_p53-534	0.071	0.061	0.125
One_ins-107	0.496	0.434	0.114
One_Prl2	0.500	0.447	0.096
One_RAG1-103	0.055	0.050	0.102
One_RAG3-93	0.160	0.143	0.104
One_RFC2-102	0.348	0.307	0.112
One_RFC2-285	0.099	0.088	0.100
One_RH2op-395	0.018	0.017	0.042
One_serpin-75	0.072	0.066	0.064
One_STC-410	0.456	0.353	0.220
One_STR07	0.460	0.393	0.145
One_Tf_ex11-750	0.488	0.387	0.206
One_Tf_in3-182	0.154	0.112	0.268
One_U301-92	0.277	0.252	0.089
One_U401-224	0.488	0.439	0.107
One_U404-229	0.123	0.103	0.162

SNP	H _e	H _o	F _{ST}
One_U502-167	0.046	0.044	0.049
One_U503-170	0.254	0.224	0.115
One_U504-141	0.389	0.351	0.089
One_U508-533	0.092	0.079	0.125
One_VIM-569	0.219	0.197	0.094
One_ZNF-61	0.415	0.352	0.152
One_zP3b-49	0.235	0.174	0.266
One_CO1^b	N/A	N/A	0.254
$One_Cytb_17^b$	N/A	N/A	0.498
$One_Cytb_26^b$	N/A	N/A	0.255
One_CO1_Cytb17_26	N/A	N/A	0.295
One_MHC2_190_251	N/A	N/A	0.259
Minimum	0.018	0.017	0.042
Maximum	0.500	0.447	0.295
Average/Overall	0.288	0.243	0.149

830 831 832

^a These SNP genotypes were combined into a single locus, *One_MHC2_190_251*, and treated as haploid data. ^b These SNPs were combined into haplotypes and treated together as an mtDNA locus, *One_C01_Cytb17_26*.

- Table 4. Percent of total collections exhibiting significant linkage disequilibrium for the pairs of
- 835 loci for which disequilibrium was most commonly observed.

			Significant linkage disequilibrium		
Criteria	Marke	er pair	Number of collections	Percentage of total	
	One_MHC2_190	One_MHC2_251	320	55%	
P < 0.01	One_GPDH	One_GPDH2	197	34%	
r < 0.01	One_Tf_ex10-750	One_Tf_ex3-182	108	19%	
	One_RF-112	One_RF-295	43	7%	

Table 5. Log-likelihood *G* and associated test statistics for the homogeneity of allele frequency log-likelihood ratio tests over all loci
across populations within regions and broad regional groupings. Because the number of populations is heterogeneous across regions,
we also tabulate *G* divided by degrees of freedom (df) for each regional level.

Broad Regions	Regions	G	df	Р	# of pops	G / df
Western Kamchatka	Western Kamchatka	2,927	328	0.00	9	8.92
Eastern Kamchatka	Eastern Kamchatka	6,376	533	0.00	14	11.96
Norton Sound	Norton Sound	1,417	82	0.00	3	17.27
	Yukon Kuskokwim	7,685	410	0.00	11	18.74
	Togiak	1,436	164	0.00	5	8.75
Western Bristol Bay	Igushik	271	123	0.00	4	2.21
Western Distor Day	Wood	3,207	738	0.00	19	4.35
	Nushagak	3,566	328	0.00	9	10.87
	Western Bristol Bay Total	16,165	1,763	0.00	48	9.17
	Kvichak	15,155	697	0.00	18	21.74
	Alagnak	1,730	123	0.00	4	14.07
Eastern Bristol Bay	Naknek	2,954	492	0.00	13	6.00
Lastern Dristor Day	Egegik	1,093	123	0.00	4	8.89
	Ugashik	608	164	0.00	5	3.71
	Eastern Bristol Bay Total	21,540	1,599	0.00	44	13.47
	North Peninsula	11,994	861	0.00	22	13.93
Alaska Peninsula	South Peninsula	11,105	779	0.00	20	14.25
	Alaska Peninsula Total	23,098	1,640	0.00	42	14.08
Western Gulf	Western Gulf	177,933	4,715	0.00	116	37.74
Eastern Gulf	Eastern Gulf	105,112	4,018	0.00	99	26.16
WAAP		62,220	5,084	0.00	137	12.24
Coastwide Total		354,568	14,678	0.00	375	24.16

843 Table 6. Proportion of estimates correctly allocated back to reporting group of origin and 90%

844 confidence intervals for mixtures of 400 fish simulated from baseline populations that contribute

- to each reporting region (100% simulations) using the program SPAM.
- 846

		90% Confide	ence Interval
Region	Estimate	Lower	Upper
Western Kamchatka	0.969	0.949	0.986
Eastern Kamchatka	0.956	0.933	0.978
Norton Sound	0.946	0.913	0.973
Yukon Kuskokwim	0.908	0.862	0.949
Togiak	0.946	0.898	0.980
Igushik	0.860	0.779	0.929
Wood	0.938	0.881	0.981
Nushagak	0.912	0.862	0.954
Kvichak	0.950	0.924	0.973
Alagnak	0.977	0.961	0.990
Naknek	0.947	0.916	0.974
Egegik	0.913	0.864	0.954
Ugashik	0.855	0.784	0.914
North Peninsula	0.893	0.851	0.932
South Peninsula	0.917	0.882	0.948
Western Gulf of Alaska	0.927	0.896	0.955
Eastern Gulf of Alaska	0.967	0.946	0.985

Table 7. Proportion of estimates correctly allocated back to reporting group of origin and 90%
credibility intervals for mixtures of 200 known fish that were removed from the baseline
populations that contribute to each reporting region (100% proof tests) using the program
BAYES with a flat prior.

852

		90% Confide	ence Interval
Region	Estimate	Lower	Upper
Western Kamchatka	0.990	0.972	1.000
Eastern Kamchatka	0.974	0.934	0.996
Norton Sound	0.985	0.961	0.999
Yukon Kuskokwim	0.978	0.926	0.999
Togiak	0.987	0.960	1.000
Igushik	0.974	0.899	0.999
Wood	0.957	0.823	0.999
Nushagak	0.956	0.866	0.998
Kvichak	0.959	0.901	0.998
Alagnak	0.992	0.973	1.000
Naknek	0.972	0.933	0.997
Egegik	0.947	0.868	0.995
Ugashik	0.959	0.898	0.996
North Peninsula	0.980	0.935	0.999
South Peninsula	0.958	0.914	0.991
Western Gulf of Alaska	0.894	0.827	0.948
Eastern Gulf of Alaska	0.983	0.950	0.999

854

855 856

Figure 1. Locations where sockeye salmon were sampled for tissues suitable for genetic analysis from throughout the Pacific Rim. These tissues were screened for 42 nuclear and 3 mitochondrial single nucleotide polymorphism markers. This baseline, augmented with additional markers, will serve as a baseline to examine the potential power and precision of stock composition estimates from fishery samples taken under the Western Alaska Salmon Identification Program. Colors denote eight geographic regions that match the colors and regions in Figure 6. Western and Eastern Kamchatka, Norton Sound, and Eastern and Western Gulf of Alaska represent five of the proposed reporting groups. The remaining regions (Western Bristol Bay YK, Eastern Bristol Bay, and the Alaska Peninsula) are further subdivided into a total of 12 reporting groups as shown in Figures 2 and 7.

Figure 2. Sockeye salmon sample locations from Western Alaska and the Alaska Peninsula 866 (WAAP) included in the SNP baseline. Colors denote the 13 WAAP reporting regions.

Figure 3. Number of loci that were out of H-W equilibrium (P = 0.05) for 0 to 30 populations. By chance, the one would expect 18.75 populations to be out of H-W expectation at this criterion (375 populations * 0.05). We review the loci that were out of H-W equilibrium at more that 23 populations in the text.

Figure 4. Number of baseline populations that were out of H-W equilibrium (P = 0.05) for 0 to 12 loci. By chance, the one would expect 2.1 loci to be out of H-W expectation at this criterion (i.e., 42 loci * 0.05). We review the populations that were out of H-W equilibrium at more that 5 loci in the text.

Figure 5. LOSITAN (Antao et al. 2008) graphical output showing the relationship between F_{ST} and H_e for SNP markers analyzed in select populations from western Alaska and the north Alaska Peninsula (method details in text). The expected distribution of F_{ST} and H_e under an island model of migration with neutral markers is shown in gray. Loci in the red area are candidates for positive selection and loci in the yellow area are candidates for balancing selection. Outlier loci are tagged with labels.

883 884 Figure 6. Unweighted pair-group method (UPGMA) tree of Cavalli-Sforza and Edwards chord 885 distances among the 375 populations included in the coastwide 42 SNP baseline. Population 886 numbers correspond to those in Table 1. Note the high variation within the Gulf of Alaska 887 relative to the WAAP.

890 Figure 7. Unweighted pair-group method (UPGMA) tree of Cavalli-Sforza and Edwards chord

- distances among the 137 populations included in the WAAP portion of the coastwide 42 SNP 891 baseline.
- 892

Figure 10. Log-likelihood ratio test (G) statistics divided by degrees of freedom (df) for each SNP marker for the populations within 901 902 the full coastwide baseline and the more restricted WAAP baseline. Note the similar and high values for the G statistics for both geographic regions at the one MHC marker included in this analysis and the generally lower values for the G statistics in the WAAP 903 904 area for the remaining markers.

911

Figure 12. Proportion of estimates correctly allocated back to reporting group of origin and 90% credibility intervals for mixtures of 200 known fish that were removed from the baseline populations that contribute to each reporting region (100% proof tests) using the program BAYES with a flat prior.